
I 
REPORT NO. FAA-AEM-77-4 

AIRPORT FACILITY QUEUING 

MODEL VALIDATION 

Li Shin Yuan 

Lawrence J. McCabe 

S. Department of Trans portation 

Transportation Systems Center 

Kendall Square 

Cambridge MA 02142 

MAY 1977 

INTERIM REPORT 

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC 

THROUGH THE NATIONAL TECHNICAL 

INFORMATION SERVICE, SPRINGFIELD, 

VIRGINIA 22161 

1 
Prepared for 

U.S. DEPARTMENT OF TRANSPORTATION 

FEDERAL AVIATION ADMINISTRATION 

Office of Systems Engineerina Management 

Washington DC 20591 



NOTICE 

This document is disseminated under the sponsorship 
of the Department of Transportation in the interest 
of information exchange. The United States Govern 
ment assumes no liability for its contents or use 
thereof. 

NOTICE 

The United States Government does not endorse pro 

ducts or manufacturers. Trade or manufacturers' 
names appear herein solely because they are con 

sidered essential to the object of this report. 



Technical Report Documentation Page 

1. Report No. 

FAA-AEM-77-4 

2. Government Accession No. 3. Recipient's Catalog No. 

4. Title and Subtitle 
5. Report Date 

May 1977 

AIRPORT FACILITY QUEUING 

MODEL VALIDATION 

6. Performing Orgenizotion Code 

7. Author's) 

Li Shin Yuan and Lawrence J. McCabe 

8. Performing Organization Report No. 

DOT-TSC-FAA-77-2 

9. Performing Organization Name and Address 

U.S. Department of Transportation 

Transportation Systems Center 

Kendall Square 

Cambridge MA 02142 

10. Work Unit No. (TRAIS) 

FA632/R7123 

11. Contract or Grant No. 

12. Sponsoring Agency Name and Address . 

U.S. Department of Transportation 

Federal Aviation Administration 

Office of Systems Engineering Management 

Washington DC 20591 

13 Type of Report and Period Covered 

Interim Report 

Jan. 1976 - Oct. 1976 

14. Sponsoring Agency Code 

15. Supplementary Notes 

16. Abstract 

Criteria are presented for selection of analytic models to 
represent waiting times due to queing processes. An existing 
computer model by M.F. Neuts which assumes general nonparametric 
distributions of arrivals per unit time and service times for a 
single service was envisioned as best fulfilling requirements. 

Data obtained from Denver Stapleton Airport were applied to this 
model. Service times and arrival rates at an express baggage check 
facility, a security station, and a gate were used as inputs. Delay 

times corresponding to the observed arrival rates were recorded and 
compared to model outputs. Using the T-test, agreement was obtained 
at the 5 percent level of significance for the mean values of the first 
two facilities. Predictions of waiting time distribution, however, 

did not pass the Kolmogroff test at the same level of significance. 
Discrepancies are due to a lack of time resolution in arrival times 
and the application of this model to multiserver situations. 

17. Key Word* 

Queuing Analysis 

Statistical Testing 

Airport Landside 

IB. Distribution Stofement 

OOCUMENT 13 AVAILABLE TO THE U.S. PUBLIC 

THROUGH THE NATIONAL TECHNICAL 

INFORMATION SERVICE, SPRINGFIELD, 

VIRGINIA 22181 

19. Security Classil. (of this report) 

Unclass ified 

20. Security Classii. (of this page) 

Unclassified 

21. No. of Pages 

50 

22. Price 

Form DOT F 1700.7 (6-72) Reproduction of completed page authorized 



PREFACE 

This study was undertaken as part of Project Plan Agreement 

FA-632. One objective of this program is the development and test 

ing of techniques to evaluate airport landside congestion param 

eters such as delay. This analysis provides a method of determin 

ing delays arising from queuing. Results contained in this report 

should be considered as preliminary and indicative of further 

development, especially where multi-server landside facilities 

require analysis. 

The authors would like to express their appreciation to the 

Program Manager, Mr. Mark Gorstein, for his support and con 

structive criticsm. 
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EXECUTIVE SUMMARY 

An analytical queuing model was examined for accuracy in 

predicting one of the major measures of airport congestion, namely, 

the waiting time at a landside facility. The particular model 

chosen is applicable to a single channel server whose arrival and 

service time processes have general distributions. This model was 

selected because 

a. Arrival time distributions obtained from measurements were 

tested and found to be non-Poisson. 

b. A potentially wide range of applicability was desired 

because of the many service facilities present at the landside. 

c. This model was available as a computer program which 

furnished waiting time and queue length distributions directly. 

In order to investigate the feasibility of using this queuing 

model as a tool for evaluating landside congestion, statistical 

comparisons were performed to determine whether there is any 

correspondence between observed field data and model predictions. 

Using observed passenger arrival rates and service time distribu 

tions obtained at Denver-Stapleton Airport as the inputs, the model 

validation was done by comparing predicted waiting times at the 

security station, express check-in, and one boarding gate. Using 

the t-test, agreement was obtained at the 5 percent level of sig 

nificance for the mean values of the first two facilities. More 

comprehensive data collection is required to validate the probabil 

ity distributions of the waiting time and queue length. 

This single channel queuing model may be viewed as the first 

step in evaluating landside congestion using an analytical approach 

Further developments in this area would include multi-channel facil 

ity modeling and the linking of various facilities to formulate a 

congestion model for the complete landside. 
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1. INTRODUCTION 

Some of the Denver-Stapleton International Airport passenger 

data which were collected for simulation model validation were 

used to determine the validity of an analytic model. This was 

done by comparing the analytically computed queue length and wait 

ing time distributions with the actual observed queue length and 

waiting time distributions in the field. It was hoped that this 

validation work would lead to the determination of the feasibility 

of using analytic models for estimating the level-of-service of the 

landside facility. 

The input data for the analytic model are the actual arrival 

rates and the actual service time as observed in Stapleton Inter 

national Airport in Denver. The outputs of the model are the queue 

length and waiting time distributions computed for each facility 

under study. The waiting time output was compared with its field 

observed counterpart for model validation. It is believed that 

this quantity is one of the most meaningful indicators of the level 

of service. 



2, THE QUEUING MODEL 

2.1 MODEL SELECTION 

There are six basic characteristics which can be used to 

specify a queuing model: 

1. Arrival Pattern: The arrival pattern of the "customers" 

could be deterministic (D) or described parametrically as a Poisson 

Distribution (or exponential arrival time] (M) or general (G). 

For many airport landside facilities the arrival pattern is most 

likely general (G). 

2. Service Pattern: The service time pattern of each server 

channel could also be deterministic (D), exponential (M), or 

general (G). In the airport landside situation it is most likely 

general (G). . 

3. Number of Service Channels: The queuing process may take 

place at a facility with a single channel or a number of parallel 

channels. In the airport landside both the single and parallel 

channel cases are applicable. 

4. System Capacity: Facilities may accommodate a limited 

queue size or the maximum queue size may be unbounded. Since it 

is most likely that no airport landside customers will be turned 

back, the maximum possible queue length may be considered infinite 

for most queuing situations of interest. 

5. Number of Service Stages (in series per each channel): 

Each channel may have a single stage or multiple stages connected 

in series. Both single stage and multi-stage processes are 

manifested by the airport landside. 

6. Queue Discipline: Queue discipline can be classified into 

(a) first-come-first-served (FCFS), alias first-in-first-out 

(FIFO); (b) service in random (SIRO); (c) last-come-first-served 

(LCFS) ; (d) priority (PRI); and (e) general discipline (GD). The 

airport landside system operates mostly on a first-come-first-

served (FCFS or FIFO) basis, with some priority (PRI) treatments. 



Based on the six basic characteristics, the most desirable 

model for the airport landside system would be a model with 

(1) general arrival pattern, (2) general service time pattern, 

(3) multiple channels, (4) infinite or finite maximum queue length, 

(5) single or multiple stages, per channel, and (6) first-come-

first-served and/or priority service discipline. In queuing theory 

notation this most desirable model is represented as: 

G/G/N1/(?32yfpnTS) with multiple-stage per channel 

It should be realized that the so called most desirable model is 

probably the most complicated model one would ever attempt to 

utilize. 

The development of analytic queuing models appear to have been 

influenced strongly by two factors: the origins of models in the 

study of congestion in telephone systems and the question of what is 

easy and possible in mathematical analysis. Therefore, many assump 

tions commonly made in queuing analyses are precisely those which 

seem reasonable in constructing queuing models associated with tele 

phone systems and those which make the models mathematically solvable 

As a result, analytic models which deal with multiple channels or 

servers are generally restricted to Poisson arrivals and exponential 

service times (i.e., M/M/N). Models which deal with general 

arrivals and general service times are presently limited to single 

channel (G/G/l) cases. 

The simplifying assumptions used in M/M/N model development 

are not always applicable to queues other than those encountered in 

telephone systems; they are particularly inappropriate when the 

customers and servers are really people as in the airport landside. 

In a telephone system the process of switching channels or jockey 

ing is carried out automatically and rapidly, whereas in many multi-

counter operations there are no easily defined rules, and people 

move with inertia. This was observed visually at Denver-Stapleton 

International Airport where queues were formed at ticket counters 

at the same time that servers were observed idle. This point was 

further verified numerically by the field data. Out of five sets 



of arrival data tested, only one set was Poisson, and none of the 

service times observed were exponential. This was the main reason 

why G/G/l model was selected over M/M/N for validation. Although 

this single channel model can represent only a limited number of 

facilities in the airport landside, it was chosen to determine 

whether there is any resemblance between observed field data and 

the model predictions. In addition, a multiple-channel G/G/N 

model is currently under investigation. 

2.2 NEUTS G/G/l MODEL 

A readily available G/G/l queuing model was chosen for model 

validation. This model, developed by Professor Marcel F. Neuts 

of Purdue University, accepts general arrivals and general service 

times and computes the time dependency features of a single server 

discrete time queue with a finite queue length. The model was 

coded in Fortran IV and it resides on the DEC-10 computer system 

at Transportation Systems Center/U.S. Department of Transportation 

(TSC), Cambridge, Mass. The program listing is included in the 

appendix. 

In the model, the numbers of arrivals during successive unit 

time intervals are independent, identically distributed random 

variables. These are expressed as the probability of a number of 

customers joining the queue during a specified unit time. The 

service times of successive customers are also independent and 

identically distributed random variables with a given probability 

density. The queue discipline is FCFS. 

For any given time, n, the queue length is denoted as X and 

the residual service time (i.e., the number of additional units of 

service time required by the customer in service) is denoted by 

Yn. The joint probability density function of queue length X and 

residual service time Y^ is denoted as P fi,i), where 
n n 

PnCi.H ■ P{xn= i, Yn = j 

Recurrence relations were derived which compute Pn+1(i,j) from 

P (i,j) under all possible conditions of i and j. This joint 



probability density function is used to compute the distributions 

of queue length and waiting time. These are the basic outputs of 

the model.* As stated before, the model has been translated into 

a Fortran IV program. The inputs to the program are: 

a. The size of the waiting room LI. In the program, LI is 

limited to 100 customers in the system. 

b. The maximum number, K, of arrivals per unit time. In the 

program, K is limited to be less than LI arrivals. 

c. The probability, P(J), that J customers join the queue 

per unit time, where J = 1,2, ... K. 

d. The maximum service time, L2, in terms of time units. In 

the program, L2 is limited to be less than 31 time units. 

e. The probability, R(J), that a service time lasts for J 

units of time, where J = 1, 2, ... L2. 

f. The probability, PO, that no customers arrive during a unit 

of time. 

g. The initial queue length, 10, and the initial residual 

service time, JO. 

h. The program control parameters, including the number of 

time units to be run and the output option selection parameters. 

The full output of this program includes the following: 

a. The mean queue length as a function of time. 

b. The distribution of queue length as a function of time. 

c. The mean waiting time as a function of time. 

d. The distribution of waiting time as a function of time. 

e. The joint density of the queue length and the residual 

service time as a function of time. 

For details, see M.l;. Nuets, "The Single Server Queue in Discrete 

Time-Numerical Analysis, I," Naval Research Logistics Quarterly, 

20 (1973) , 297-304. 



Any one or the combination of the above output items can be printed 

out according to the user-selected options. 

2.3 SUPPORTING PROGRAMS 

In addition to the queuing model itself, two supporting pro 

grams were written. One of them is used to process the raw data 

for queuing model input. The other program is used to compare the 

model-predicted waiting time distribution with the field-observed 

waiting time distribution. 

2.3.1 Preprocessing Program CHISQ.F4 

This program was written for preprocessing the raw arrival 

data which.were gathered in Stapleton Airport. The functions of 

this program are: 

a. Convert observed arrivals into an arrival distribution 

(histogram). 

b. Determine the sample mean and variance of the data. 

2 

c. Perform X -test (chi square test) on raw data to determine 

whether the arrivals are from a Poisson process. 

d. Convert the arrival distribution into compatible units for 

the G/G/l model. 

This program was necessary because the raw data were not directly 

applicable to the G/G/l model. The test of Poisson was incorpor 

ated in this program, because if the majority of the arrivals were 

Poisson and the service times were exponential the applicability 

of the analytic approach would be greatly broadened by using 

M/M/N models. This program was written in Fortran IV language and 

resides on the DEC-10 computer system of TSC under the file name 

CHISQ.F4. The program listing is included in the appendix. 

2.3.2 Postprocessing Program KOLMOG.F4 

This program was written to compare the model-predicted waiting 

time distribution with the field-observed data. The computed and 

the observed waiting time distributions are the inputs to this 



program. The Kolmogroff statistic* is computed from the input 

data. Based on this statistic a decision is made whether to accept 

or reject the hypothesis that the predicted waiting time distribu 

tion can be used to represent the field observed waiting time dis 

tributions. The outcome of this test determines whether or not the 

queuing model can be used to represent airport landside facilities. 

As before, the program was written in Fortran IV and resides 

on the DEC-10 computer system at TSC under the name of KOLMOG.F4. 

The program listing is also included in the appendix. 

*K.V. Bury, Statistical Models in Applied Science, John Wiley and 
Sons, New York, 1975. 



3. MODEL VALIDATION 

3.1 DEFICIENCIES IN THE FIELD-OBSERVED DATA 

Data deficiencies are discussed here for two reasons. First, 

because of these imperfect data a judgement of the validation 

results should be qualified accordingly. Second, if more data are 

to be obtained for further analytic model validation, those 

deficiencies are the pitfalls to be avoided. It may be noted that 

the field data were not taken specifically for the purpose of 

analytic model validation but rather for a simulation validation. 

This would probably account for some of the reasons for a deficient 

data set. The major problems of the data, in addition to the ex 

pected nonstationarity, are listed as follows: 

a. The majority of arrival data was recorded as number of 

arrivals per 5 minutes. That means that inter-arrival times can 

be erroneous by as much as 5 minutes. However, because the service 

times are on the order of seconds, there is an incompatibility in 

the accuracy of the two sets of data. A 5-minute inaccuracy in 

data is too coarse to draw definitive conclusions. 

Waiting times were grouped in 5-second intervals to form 

distributions. Again, compared to the expected service time this 

is also too coarse for detailed validation. It is suggested that 

the arrival times and the waiting times for each customer should 

be recorded and aggregated in 1-second intervals. 

b. A variable number of service channels were used during 

the data-taking period. The number of servers changes as the 

demand slackened or increased. 

c. The data are incomplete. For all the facilities, the 

queue length data are missing. 

d. Observed data were arbitrarily sampled. This may or may 

not give a reasonable representation of the population on which 

the data were taken. 



In spite of these deficiencies, three facilities were selected 

for model validation. They are the UAL express check-in, the 

security check, and the Branniff gate. 

3.2 TEST PROCEDURE 

The field observed arrival data and the service time data were 

preprocessed to conform with the input requirements of the G/G/l 

model. Based on the preprocessed data the waiting time distribu 

tion and the queue length distribution are computed by the model. 

The predicted waiting time distributions and their expected values 

are compared with the field-observed counterparts. The comparison 

of the mean is done by the t-test and the Kolmogroff test is used 

for the distribution. 

3.2.1 T-Test for Means 

The mean value of the predicted waiting time is compared with 

the observed mean waiting time using the t-test. The null hypoth 

esis for this test is that the population mean of the observed 

waiting times is equal to the predicted value on the basis of a 

random sample. The t-statistic is defined as: 

. x - a 
t = 

where 

x = sample mean 

a = predicted value of mean 

s = standard deviation of sample 

n = number of sample points 

The absolute value of the t-statistic is compared with a critical 

value ta>2 , for a given significance level a. The null 

hypothesis will not be rejected (i.e., it will be accepted that the 

mean waiting time equals a) if the absolute value of t-statistic 

is less than t ,-, -. . The numerical values of this critical 
a/2, n-1 



statistic may be found from standard statistical tables.* The 

significance level a is usually set at 0.05. 

3.2.2 Kolmogroff Test for Distributions 

For a given sample x of size n, such that 

X, < X,, < • • • < X 
i ■ L - n 

a cumulative distribution function, G (x), is defined by the 

following: 

Gn(x) = 0, x < xx 

= r/n, xr < x < xv+1 

= 1 x > -x 
L> x - xn * 

If the sample x comes from the completely specified postulate, 

F(x), then 

lim Pr /Gn(x) - F(x) = o|= 1, for all x. 

Based on this fact, a test of fit for F(x) is constructed by 

defining the Kolmogroff statistic, 

Dn - sup - F(x) 

If the value D is larger than a critical value (as a function of 

n) (d ) , the null hypothesis that the sample x comes from the 

postulate F(x) will be rejected. For significance level a = 0.05 

the critical value is' 

See, for example, E.L. Crow, F.A. Davis, and M.W. Maxfield, 

Statistics Manual, Dover Publications, New York, 1955. 

Bury, Statistics Models, op. cit. 

10 



(d ) = ^4^- , for a = 0.05 . 

The observed waiting time distributions are tested by the 

Kolmogroff test. 

3.3 FACILITIES TESTED 

3.3.1 Security Check 

3.3.1.1 Observed Data - Data were taken on January 23, 1976, 

between 1500 and 2000 hours. The arrivals at this station were 

aggregated over 5-minute intervals, which resulted in 59 data 

points. From these, the histogram shown as Figure 1 was produced. 

A chi-square test of the data showed no agreement with a Poisson 

process, and thus the G/G/l model was applied. Two channels were 

generally in service; however, at infrequent intervals only one 

channel was operating. The service time per channel was operating. 

The service time per channel was assumed to be a constant 8 

seconds per customer. Waiting times were recorded for 726 arrivals 

sampled from a total of 3,511 actual patrons. The frequency dis 

tribution of waiting times is shown in Table 1. 

3.3.1.2 Test Results - In order to get better resolutions, the 

arrival rate was converted from the number of arrivals per 5 

minutes to number of arrivals per 4 seconds. This is done by 

dividing the observed number of arrivals (per 5 minutes) by 75. 

It is true that the resulting arrivals may not represent the actual 

arrivals if better resolution were used when the data .were taken. 

However, this is probably the best that can be done with the exist 

ing data. 

In the majority of times, two channels were in operation, 

each with a constant 8 seconds service time (estimated). The 

service time used in the analytic model was assumed to be 4 seconds 

for 97 percent of time, 12 seconds for 2 percent, and 20 seconds for 

1 percent of time. It Is believed that this service time distribu 

tion used in the analytic model validation is more realistic than 

the estimated constant service time. 

11 
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FIGURE 1. OBSERVED ARRIVALS AT SECURITY CHECK 



TABLE 1. OBSERVED WAITING TIME (IN SECONDS) AT SECURITY CHECK, 

FRIDAY, JANUARY 23, 1976, 1500-2000 HOURS 

No. of values =726 (sampled from 3511 passengers) 

No. of zeros = 505 

Mean = 11.63 seconds 

STD. Dev. = 23.05 seconds 

Minimum = 0, Maximum = 163 seconds 

69.5% waited less than 10 seconds 

99% waited less than 105 seconds 



The comparison of mean and distribution are done separately 

as follows: 

a. Test for Mean Wating Time: The observed 11.63 seconds' 

mean waiting time at security check is compared with the model-

predicted mean waiting time of 10.41 seconds by the t-test. The 

t-statistic is computed as 

t = x " a 

s//n 

11.65 - 10.41 

23.05/ 

= .1.425. 

The critical value is 

ta/2,n-l = t0.025,725 = lp96° ' 

Since t is less than t ^ n-l> tnere is n0 reason to reject the 

hypothesis that the G/G/l model can be used to predict the mean 

waiting time for the security check tested. 

b. Test for Distribution: The observed and the computed 

waiting time distributions are compared by Kolmogroff test. The 

Kolmogroif statistic is computed by the program KOLMOG.F4 as 

follows: 

Dn = 0.08099, with n = 726 

The critical value is 

r, x 1.36 1.36 
(a j = = 

n c /n /726 

= 0.055, for a = 0.05. 

Since D is greater than (d ) , it is concluded that the G/G/l 
it n v 

model cannot be used to predict the waiting time distribution at 

the security check tested. 

14 



The field observed and the computed waiting time distributions 

are plotted in Figure 2. It is noticed that for waiting time less 

than 10 seconds the field observed curve is flat. This flat por 

tion is the cause of the high value of Kolmogroff statistic Dn. 

Checking with the observed raw data it is found that there are 

many (505 out of 726) who went through security check without any 

wait. All of the rest waited 10 seconds or more. However, there 

were no persons recorded as waiting less than 10 seconds if they 

were waiting in line. This most likely indicates that the person 

who took the data arbitrarily recorded anything less than 10 

seconds as 0 seconds. This casts some doubt on the validity of 

this portion of the field data, which therefore was omitted in 

comparison. The observed and the computed results are summarized 

in Table 2. 

3.3.2 UAL Express Check-In 

3.3.2.1 Observed Data - Data were taken on January 23, 1976, 

between 1500 and 2000 hours. The arrivals were taken in 5-minute 

intervals. The histogram of the arrivals is shown in Figure 3. 

The arrivals do not agree with a Poisson process. 

A total of 58 arrival intervals were observed. The number 

of channels in service varied between one and two. The service 

time per channel was in cumulative distribution form. (See 

Figure 4.) There were 192 arrivals sampled from a total of 337 

actual passengers. (See Table 3 for details.) 

3.3.2.2 Test Results - As before, the arrival rate was converted 

from number of arrivals per 5 minutes to number of arrivals per 

10 seconds for better resolution. The service time distribution 

was deduced from the observed cumulative distribution plot (Figure 

4). 

The effect of the variable number of channels in operation was 

compensated by multiplying the arrival rate by a factor correspond 

ing to the average number of servers in operation. The comparison 

of mean and distribution are done separately as follows: 

15 
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FIGURE 4. UAL EXPRESS CHECK-IN SERVICE TIME DISTRIBUTION 



TABLE 3. OBSERVED WAITING TIME (IN SECONDS) AT UAL EXPRESS 

CHECK-IN, FRIDAY, JANUARY 23, 1976, 1500-2000 HOURS 

No. of values = 192 (sampled from 337 passengers) 

No. of zeros =35 

Mean = 59.75 seconds 

Std. Dev. = 68.15 seconds 

Minimum = 0, Maximum =427 seconds 

18.23% with zero wait 

26.6.% waited less than 10 seconds 

99% waited less than 330 seconds 



a. Test for Mean Waiting Time: The observed 59.75 seconds 

mean waiting time at UAL Express check-in is compared with the 

model-predicted mean waiting time of 52.68 seconds by the t-test. 

The t-statistic is computed as: 

t = * " a 
s//n 

59.75 - 52,68 

68.15/ /T57 

= 1.437, 

The critical value is 

a/2,n-l 0.025,191 

Since t is less than t /- n_i> there is no reason to reject that the 

G/G/l model can be used to predict the mean waiting time for the 

UAL express check-in tested. 

b. Test for Distribution: The observed and the computed 

waiting time distributions are compared by Kolmogroff test. The 

Kolmogroff statistic is computed by the program KOLMOG.F4 as 

follows: 

Dn = 0.11894, with n = 192 

The critical value is 

(d ) = LJ1 hll 
n c /n /n /I92" 

= 0.098, for a = 0.05 

Since D is greater than (d ) it is concluded that the G/G/l 

model cannot be used to predict the waiting time distribution at 

the UAL express check-in tested. 

The field observed and the computed waiting time distribu-

tions are plotted in Figure 5. Note that if the waiting times 

which are less than 30 seconds are treated the same, the predicted 
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waiting time, distribution is a rather close fit to the observed 

waiting times. 

The observed and the computed results are summarized in Table 

4 for better comprehension. 

3.3.3 BranifC Gate 

3.3.3.1 Observed Data - Data were taken on January 25, 1976, 

between 1000 and 1500 hours. Forty-four arrivals were observed 

and recorded to the nearest minute. The histogram of these is 

shown in Figure 6. A chi-square test showed a lack of agreement 

with a Poisson process. The service time per channel is shown 

as Figure 7 in cumulative distribution form. In this case, only 

one channel was in service. Braniff gate waiting time data were 

combined with all other gate waiting times to form a single dis 

tribution shown in Table 5. There were 368 customers sampled 

from a total of 1,498. This combined dsitribution was used for 

comparison with the G/G/l model. 

3.3.3.2 Test Results - For better resolution, as before, the 

arrival rate was converted from numbers of arrivals per minute into 

number of arrivals per 10 seconds. The service time distribution 

was deduced from the observed cumulative distribution plot (Figure 

7). The. mean waiting time predicted by the G/G/l model at Braniff 

gate was 33.85 seconds, which is significantly lower than the 

observed mean waiting time at the gate (68.96 seconds). However, 

it is emphasized that the field observed data were not observed at 

Braniff gate alone. They were accumulated for all gates in service 

during the observation period. Since the Braniff gate was relative 

ly lightly used and the service time was generally lower than the 

rest of the gates. The predicted lower waiting time at Braniff 

gate was consistent. Because of the lack of field data, the 

statistical tests were not done. However, the observed (for all 

gates) and the computed (for Braniff gate) results are summarized 

in Table 6. 
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TABLE 5. OBSERVED WAITING TIME (IN SECONDS) FOR ALL GATES, 

SUNDAY, JANUARY 25, 1976, 1000-1500 HOURS 

tsj No. of values = 368 (sampled from 1498 passengers) 

No. of zeros =120 

Mean = 68.96 seconds 

Std. Dev. = 108.79 seconds 

Minimum = 0r Maximum = 585 seconds 

32.6% with zero wait 

38.5% waited less than 10 seconds 

99% waited less than 455 seconds 



TABLE 6. BRANIFF GATE COMPARISON 

OBSERVED RESULTS (ALL GATES) COMPUTED RESULT (BRANIFF GATE) 

Waiting Time: 

Mean *= 68,96 seconds 

Std. Dev. = 108.79 seconds 

32.6% with zero wait 

38.58% waited less than 10 seconds 

99% waited less than 455 seconds 

Queue Length: 

(No Information) 

Mean - 33.85 seconds 

25.1% waited less than 10 seconds 

99% waited less than 160 seconds 

Mean =1.95 

99% of time the queue length was 

less than 9. 



4. CONCLUSION 

As mentioned before, the field data were not collected 

specifically for the analytic model validation and thus were 

not ideal for the purpose of this study. Instead of taking the 

number of arrivals per 5 minutes and taking the number of delays 

in a time bracket, the data for actual delay in seconds for each 

passenger would be more suitable for analytic model validation. 

Because of the single channel limitations, there are many 

facilities in the airport landside which may not be represented by 

the G/G/r model (e.g., ticket counter, baggage claims, curb sides). 

However, despite the less than desirable field data, for all three 

facilities tested the G/G/l model adequately predicted mean values 

of the waiting time. Moreover, the tested facilities include 

those whose numbers of servers were changed to accommodate demand 

changes. It seems to suggest that as far as the mean values are 

concerned, the G/G/l model can be used for waiting time predictions 

The predictions of waiting time distributions, however, were not 

good. The model did not do well enough to pass the Kolmogroff 

test, possibly because of the reasons described above. 
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APPENDIX 

PROGRAM LISTINGS 

A.I YNEVTS.F4 - G/G/l MODEL 

C THIS PROGRAM MAS CFVElOFEl bY PARCEL F. "NfcuTS - OEPART-

C MENT OF STATISTICS - HOHUlE UNIVERSITY - WFST LAFAYETTE-

C INDIANA. OCTOPF* 1971. 

C 

C THIS PROGRAM COMPETES THE TIME CEPENOFNT FFATORES OF A 

C STNf-LE SEhVEP DlbCRtTt TlNt ULFLE MTU A FJM1E WAITIMC-

C ROOM. 

C WITH Tht PPESPNT CI^ENSION STATEMENTS A wAlTINGROOM OF 

C SIZE IjP TO ONiF HLNPP-El MAY HE STUDIED. THE OE-NSITY OF THE 

C SERVICE Tl^E CAN HE CG^CENTP-ATFC ON UP TO THIRTY POINTS. 

C 

C THE FULL OUTFIT CF THIS HhOGKfi^ INCLUDES THfc FOLLOWING 

C 

C 1. THE MEAN Ol-EUt LENGTH flT Tlwfc N. 

C ?. THF D1STPIQIIT1CN OF THE GUFnt LENGTH AT TIME NU 

C 3. THE MEAN wMTlNGTH'f- AT T l^F M« 

C 4. THE LlbT»IBUTlC\ CF THt WAlTlNGTlME AT TIME N« 

C 5. Tht JCI^'T ^FNSITY L\- THl GLFLE LENGTH Ah:D THE RF.SIDUAL 

C SENVlCf Tlf-E AT Tli^fc N. 

C 

C AIL THFbE APf- rONPIjTFi; FCh n Lr. TO A SPECIFIED VALUE NNN. 

C 

C HY LSE CF Ut. V^hlOtS OH I lUNb» LlSTtO HtLOv. i SOME OF THEbt 

C FF.ATUKES MAY »F-. LELKTcD I-hOK ThE WhlTThN CDl.PLT. 

C 

C THE ThtGPf-TICfll LEVELuH^tM OF 1 Hfc LISCHtTF" TIN'E OUbUt 

C WITH Ah OM*OUM.)F.L COLFut LEimGTH VAY bt FOUNi* INv 

C 

C * STtLLM C. DAFf-hNOS ANC PAkCEl F# NEUTS 

C * A SlNf-Lf St'cvEH OttLE' IN DiSrfrETE TIME * 

C *. CAHIt^S CD rhMPF. Ct HEChtKCME CHtWAT 'IONwELLE -' 1971. 

c 

C THt FOLLOWING IS A CO^HANiUN PAHtK TO THE f<RESFN>T PROGHAMv 

C 

C * MAh»CFL F. NFUTS 

C * THl- Sl.viM> cH<Vt"P ClELt IK PTbCKtTH TIME - NUMERICAL 

C * ANALYSIS « 

C * PUHDUt MlwK.rfiwAPH StrlES - CfM • CF SIATlSTI.CS. 

C « PLWDL'I- UMVFKSITY - wESl LAFAYETTE - IN —47907 

C 

nN ^ (luH) ,r (J0> »PH( 1 0Ut3u) «X (lOf) «Y < 100* JO) 
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C »#*«# T H K C P I I C N ^ «**«* 
C 

•C IN CM3ER TO ivPITt OLT Tt-t JOINT OtNSITY OF 1 HE OUEUt LENGTH 
C AND THE Rt?TtJI:AL SERVICE Ufct. SE1 CPT(1) = ] - OTHERWISE 
C SET OPT(l)=o 
C 

WtA0(S.«>9e) Lf-T ( 1 > 

C 

C IN ORDER TC Went CUT THE UlST^ldUl ION- OF THE WAITING-
C TIME* SET OPT(?)=1 - CTHESWIbf SET CPT(2)=C 

READ(5,Q99) CPU?) 

C 

C THE USE* MAY i-l SH TC COMPLTE AnC WHITE THE DISTRIBUTION OF 
C THE iMAlTIN-rilvt CNLY *»T TIME PnlNTS 'aHICh flRE A MULTIPLE OF 
C A CONSTANT h K». THIS TC SAvt ON H^oChSSING TIME AND ON Tht 
C NUMF-tK OF L.TNF? CF CU1PO1. IN THIS CASE ThF IDFNTTFIFk 
C OPT(3) ShoULD HE SET tOUAL 10 ONE AND THE NOMBEH NR ShOULU B 
C GIVEN. UP1 (3) ANC NR A«E Tu HIE GIVEN IN AN I]«I2 FORMAT. 

KTF.STl=f)PT (1) 

KTEST2=CPT<£> 

KT£ST3=0PT(3) 

IF (KTE.ST3.FC1) K1f.S 

IF(KTF.ST3.F:G.O) KTFb 
C 

C »<nnn» THE C A | A 

C . . 

C LI IS THF. SIZF OF THE V»A11 iNbPf.CM. LI IS LT. 101 
C 

REAL(B»10ni) LI 

C 

C L2 IS THfc Ml)M°ER CF PC IMS ON '.-HICH THE UEnSITY OF THt 
C SERVICE TIME TS CCNCF.NTK AT ED. \c IS LT. Jl 

READ(5»100J) L2 

C 

C K IS THt MAXIMUM NUVRtR OF ARRIVALS PER UNIT CF TIME. 
C K SHOULD bF. AT LEAST CNE ANU STRICTLY LEbS THAN Ll. 
C 

READ(5»1001) K 

C 

C R(j) IS THE PPOBAeiLllY THAT a SERVICE TlMF LASTS FOR J 
C UNITS OF TIME. 

C ONE SHQULO VEciFY FJEFCREHAnD ThAT THE SUM » (1) ♦. • .R (L2) 
C IS EQUAL TO ONE. 

C 

READ(5«100?) (R(J)tj=ltL2) 
C 

C P(J) IS THF PO.0BABILITY THAI j CUSTOMERS JOIN THE OUEUE 
C DURING A UNIT OF TlfcF. 

C THE INDEX J Pl.'NS FROM ONE TO K. 



REALHStlOO?) <P(J)»J=itK) 

C 

C PO IS THE PRCFABlLlTY THAT NU ClSTOERS ARRIVE DURING A 

C UNIT OF TIMF. 

C ONE SHOULD VEPIFY RFFCREHAND THAT FO + P(l) ♦•••♦P(K) 

C IS EQUAL TO OKF. 

C 

READCbtlOp:^) PO 

C 

C Id IS ThE INITIAL OUEtE LENGTH. 

C JO IS ThE INITIAL RESIDUAL StRV/ICE TIME. 

C IF 10=0* THFN J0 = 0 ANU CONVERSELY. 

C 10 SHOULD NOT fr.XCEEC Ll. 

C JO SHOULD NOT E.XCEFC L2. 

C 

READ(S.lOOl) 10 

PEAD(b»100D JO 

C 

C NNN IS ThE MAXIML^ T IKE HCINT FCR VlUCH THE OOEtJE 

C FEATURES ARE COMPUTED. NNN SHOULD EE AT LEAST ONE AND 

C AT MOST 9999. NOTE HOwEVEfi THAT THE PROCESSING TIME 

C AND THE NUMBEP OF LINES CF OUTPUT GROW PROPORTIONATELY TO 

C THE VALUE OF NNN. 

C 

READ(S»1004) NNN 

IF (IO.EO.O.AND.jO.EO.O)GOTo 2001 

PP(I0»J0)=l. 

GOTO 2002 

2001 P00=l. 

2002 N=0 

X11=PO 

DO 21 1=1,K 

XI = I 

xii=xn+P( n 

X1=X1*XI»P(I) 

21 CONTINUE 

DO 22 J=1,L2 

Xj=J 

X2=X2+XJ#P(J) 

22 CONTINUE 

Xll=Xll-2. 

X11=ABS(X11) 

WRITE(3*1O22)K,L2»L1 
Nl=0 

wRITE(3tl007)hltP0«(JtP(J)«JBl?K> 

WRITE(3»1O12> 
WRITE(3*1O1O)(JtR(J)tj=l»L?) 

WRITE(3,1012) 

WRITE(3«l008)IOfJO 

WRITE(3«1O12> 

WRITE(3»1009)NNN 

WRITE(3«1O12) 

WRITE(391O13)X19X2 

WRITE(3»1OO6) 
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C **#«* DIAGNOSTICS ***** 

C 

IF(LWLE.K) GCTC 2005 

IF (IO.EG.O.AND.JO.NE.O.OR.lO.NE.O.AND.jO.EQ.O)GOTO 2005 
IFtXll.GT..000001) COTO 2005 
IF(KTEST3.EG.1.ANC.N'R.LT.2) GOTC 2005 

WRITE(Af3?00> 

3200 FORMAT</»1X»*THF PROGRAM HAS RLN*> 
C 

C 

C 

L11=L1-1 

L21=L2-1 

L22=L2+1 

Ml=Ll*L2 

Kl=K+l 

00 13 1=1,LI 

Y(1»L2)=O.G 

13 W(I)=1.-PO 

IF (K.EO.l)GOlO 2003 

DO 20 T=2.K 

W(I)=\Ai(T-1)-F(I-l ) 

20 CONTINUE 

C 

C AT THIS STAGE THE INPLT DATA HAVE GEE.N NtAD INt THE 

C PP-ARRAY HAS PEF.N IM1IALI2EU A^0 THE INPUT DATA HAVE 

C BEEN WRITTEN OUT AND SUBJECTED TO SCME RUDIMENTARY 

C DIAGNOSTIC TESTS. THE NEX1 LINK STAHTS THE MAIN LOOP 

C WHICH IS REPEATEC NNN TIMES. 

C 

C #**#n THE MAIN LOOP ««#** 

C 

2003 N=N+1 

IF(N.GT.h^N) STCP 

C 

C THIS PORTION1 OF THE PkOGHAM COMPUTES ThE Nh"W PP-ARRAY. 

C PP(ItJ) IS THF PHCPAH1LITY THAT AT THE TIME CONSIDERED 

C THERE AKE 1 CUSTCMFSS IN THE SySTEN AND THfc' RESIDUAL 

C SERVICE TIME OF 1HE CUSTOMER PElNG SERVED IS J. 

C THIS IS FOP I HFTfcEEN Oi\E ANU lit FCR J bETWEEN ONE AND 

C L2. Tht IOENTTFItR POu CONTAIN^ THE PROBABILITY THAT THE 

C QuEUt IS EMPTV. 

C 

WRITE(3tin00) ' 
WRITE(3tlnl7)N 

IwRITE (3* 1 012 > 

X00=P00+pP(1»1) 

DO 1 1=1«k 

X{l)=p(I)«POO*PO*f'P(l*ltl) 

11=1-1 

DO 3 Mjsl, I 

X (1)=X ( I) ♦P(l*l-NL 

3 CONUMif 
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UO tL JM»1 21 

IF(I.EO.l)G01C 51 

DO b NV=1.II 

Y(I»J)=Y(T»J)+ P(I-N 

5 CONTINUE 

51 CONTINUE 

? CONTINUE 

1 CONTINUE 

DC 6 I=Kl,Lli 

NU1=I-K 

NU2=NU)+1 

11=1-1 
X(1)=P0*RP(1+1*1) 

00 7 NU*M. ?.%\ 

X(I)=X(I)+P< I + l-K'D^Pf- (MJtl ) 

7 CONTIMJF 

DO ^ j=l«|..?l 

Y(I«J)=PO*PP (I«j + i» 

DC H l\V = Mi] ♦ 11 

Y (I * J)=Y ( T , J> +P ( T-^VH'PF (Nv'» J* 1 ) 

8 CONTU.UF 

9 CONTINUF 

DO 10 MJ=1»k ■ 

X(L1J=X (LD+U 

10 CCMIN-Ue 

UO 11 J=1.L21 

Y (Ll»_J)=Pp{Ll 

DO 12 M; = l «K 

Y(l.l*o)=Y (t. 1 » 

12 CCNTIKUfc 

11 CONTIMiK 

C 

C 7(1) CONTAINS FlhST TrL UiEKSllY ANC NEaT T^E CISTRIBUTICN 

C OF Tht (.Lf.UF itNGTH fi| \*"c. T11^»- HClNT CONSfOtPEO, 

C >VN CCN1MNS th»: Mfi./i\ -..UtLh LENGTH AT THL TIME POINT 

C rCNSIOtHl-0. 

c 

XM-.= 1 ,-PO^ 

UC; m 1 = 1,1 1 

/(I)=0.0 

PC lb J=l.L/' 

PP(ltJ]=Y[|^)tMJ»M]) 

/ ( I )=/ (T ) tn-ll .j) 

lb COM 1M"-

1^+ ((JIM JMUE 

t-0 
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IF (KTeST3.F»o.O) fiUO 

IF 

IF (Ul.r,T.r,.q) * 

1F (r. T l- c T 4 . c q . i) 

IF (h Tr:cTH.FG.u) 

2U0ti CON7 IMJF 

C 

C THIS POkTION- OF" THF. PhOGhAI* CO»'PUItS 1HF_ CISTHIBUTION UF 

C THE VlhTUAL tv/^ITlNGTlNF AT TINT N. "IhF ftLGoHIThM IS AN 

C ANALOGUE OF HCNNEk*S wtThCU FC- THE EVALUATION OF QhUI-

C K'ARY POLYNOMIALS* hLT AF:APTE.U .juhE 10 CONVOLUTION PkOUUCTS 

IF (KTEST^.F^.U) 

2010 CONTIM.'F 

DO 32 J=1.L2 

WT (J)=PP(l 1 »j) 

32 COM IMJF. 

DO 33 J=L?2.N1 

wT (J)=O.r 

33 CONTINUE 

MN 1 = 1 

DC 34 jx = 

JX1=L1-JX 

DO 35 J = 2, 

wT(J«)=0.n 

(1» 

00 35 NU 

WT ( jR)=V».'T ( JH) 

3b CONTINUF 

WT(l)=0.0 

DC 37 JJ=T»Lc 

WT(JJ)=taT(JJ) 
37 CONTINUF 

34 CCNTINUfe 

Wl ( 1) 

UO 36 J=?.Ml 

wT(u)=Ii'T(j)+!aT(j-i) 

2 M N = 2 M M +1 , - Iv T (J) 

36 CONTINUE 

2006 CONTINUF 

C 

C THE WRITE STATEMENTS FOR 1 HE FfGUIkEO OUTPUT 
C 

3009 WRITE(3»lfil6)N»XMK 

WRITE (3, Ml?) 

36 



bRITt<3*inie)N 

XK1TE(3*1012) 

DC 4()00 1 = 1 «L 1 

IF kt (I) .LF .0.9999'?) 6C TO 6000 

GO TO 4010 

4000 CONTINUE 

4010 COMINUF 

IF (KTtST?.PO.0.*N-L.KlEST4.c-G,0) GOTO 2007 

CO 4 10'.' 1 = 1 .N 1 

IF (fcTU) .If.0.^9999) GOTO 4100 

K J P = I + 1 

go ro mip 

4100 CCimTINUE 

4110 CONTINUE 

WRITE <3«10?0)K«M«POO» (j»V»TU) t-J=l»MlP) 

2007 CONTINUF 

IF (KjfeSTl.EG.O) GOTO 

wRITfc(3»l0l2) 

WRITE(3tlO12) 

DO 17 1=1,LI 

WRITE (3*1005) I • (P»-(l»'w) »J=1«L2) 

17 CONTINUE 

2004 GO TO 200? 

2005 W*ITEn«9QP) 

WHITEn«3000)Xll 
3000 FORMAT (/»1 X,/^H = ^»E20.l0) 

WRITE(4,3100)XII 

3100 FORMAT(/♦1X,*E&ROh» All = #»E20.10) 

C 

C THE FORMAT STATEMENTS. 

C 

997 FORMAT(11,12) 

998 FORMATKt ATTENTION^ THERE ARE ERRORS IN THE INPUT** 

** OATA. PLEASE CHtCK. *) 

999 FORMAT (Il> 

1000 FORMAT (^1rf) 

1001 F0RMAT(T3) 

1002 FORMAT(3F7.5) 

1003 FORMAT(F7.S) 

1004 FORMAT <I4) 

05OS FORMAT(3X,13*1 OF7 .4» (ex*10F?*4>) 

1006 FORMA1(//) 
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1007 FCPMAT(* THE DENSITY OF ThE NLMBER OF ARRIVALS PER*, 
** UNIT OF TIME*,// (2X , 10(l4,F8«t>)) 

1008 FORMATC* THE INITIAL OUELF LENGTH IS *,I3,/* THE*, 
«* IM1IAL RESIOLAL SERVICE TIME IS *,I3) 

1009 FORMATC* THE NUMBtR OF TIMf POINTS COMPUTED IS*» 

1010 FORMAK* THE CENS1TY CF THr SERVICE TIMES*,//2X, 

1011 FORMAT(3X,10(I4,Fe.5)) 

1012 FORMAT(Z) 

1013 F0RMAT(2X.*THE V.E/iN N* • OF ARRIVALS PER UMT-TlMEv*, 
*F10,4,/* THE MEAN SERVICE TlMEv*,F10 .4) ' 

1014 FOPMAT<*1*,////* THE TRANSIENT BEHAVIOR OF A *, 
**D1SCP«:TE TIME CUcUE WITH * FINITE WAITING ROOM*, 

1015 FORMAT(* THE CUtUt IS EMPTY WITH PROBABILITY*, 

1016.FORMAT(* AT TIME N =*♦IA,* 1HE MEAN OUTUE LENGTH*, 
»* EGUALS*,FJC.^> 

1017 FORMAT(* THE GbEUt CHARACTfR1STICS Al TIME N *•*» 
I 

1018 FOPmATC* THE CISTNltaUTICN nF THE QUEUE LENGTH *• 
**AT TIWF ^ = *,-I4/) 

1019 FORMAT (* THE jOIN'T DENSITY CF THE QUtUF. LENGTH *, 

**AND THE ^ESICUAL SERVICE TIME AT TIME N =*,I4>) 

1020 FOhmAT(* THE CISThlBUTION nF THE IwAITlNGTIME AT *»• 

1021 FChmAK* thE MEAN w/AITINGTT^E AT TIME N =• 

1022 FORMAT (^ THE LPFFh LIMT OF THE NUMBER OF ARRIVALS*, 
** PER UNIT OF TIME IS*,13,/* ThE UPPER LIMIT OF THE*t 

** NUMbER CF LMTS OF StfiVlcE-TIME PER CUSTOMER IS*, 

*I3»/* ThE. UPPER LIMIT TO Tut NLNBER OF CUSTOMERS*, 
** IK THE 

END 
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A.2 CHISQ.F4 - PREPROCESSING PROGRAM 

Cl. READ IN THE SAMPLE OF ARRIVALS PER UNIT TIME. 

C2. SORT THE SAMP|_t BY MJMBEK OF ARRIVALS. 

C3. CHECK IF THF SAMPLE IS « POISSON PROCESS. 

DIMENSION Al 1101) »P1(1O1)»TP(1O) 

C. AKI)=MIMttEk OF CCCUhANCES OF 1-1 ARRIVALS PER UNIT TIME 

C. N=TO1AL SAMPLE F 

SUM=0. 

900 

SMALL=0.0?*N 

DO S00 1=]»1G1 

A1(I)=O. 

DO 1000 1=1,N 

4000 

IF (lA.MF.O)GC TO hOOO 

Al (1)=A1(1) + 1 

GO TO 1000 

COIMTINUF 

DO bOOO J=l»iOO 

IF (lA.GT.j)GC TC bOOO 

Al(J+1)=A1(J+l)+1 

SUM=SUM+IA 

5 000 

100 0 

IF(j.GT 

GO TC 1COO 

CONTINIjF-

HA.T 1 

TYPfc 

IF (kAI TO.I T.O.^.O 

VE.PIFY IF T»-F SP^PLF 

JM1N=] 

10.CrT.l.c>G0 TO 

C. 

PI (I)aFXPA*r\ 

eioo contim-if 

f)O ^OOC Isj»/ 

FACT=FACT«] 

IS 

IF (HI 

6000 

GO TU *) 

t-?OO CONTINUE 

,L6 TC 620C 
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AlH=ai (JN'A/ ) 

IKHlL.r:U^HL)r-C TO £310 

P1L = PII. *Kl (I) 

A1L=A1L+£1(I) 

IL = 1 

6310 

IF <HlH.f:(- . S>'AL.L)f;L Tu fcJirO 

l ( Jf- AX- 1) 

DOF=CUF-l 

fc3?0 IF (.HL.Gh •SK'-LL . AM..: .P ir ,<3E .SMALL X-.O \Q 

6300 CONlIM'f. 

£4 0 0 COM IKUF 

l)OF=DGF-l 

IL1=1L+] 

Ihl=lh-1 

CHI<r=(flU.-PlL)*«i?/» 1L* (A 1^-F lh )<»*?/f-ih 

L.'C eSOC I = 1L 1-IH1 

CPIir=CM<>* (Al (] ) —1 (1) )**?/t\ (I ) 

(-500 COM iMtP 

GO TO 

IVHr. 

COisil 

DC S l 

PC H0H! Jsl»10 

eoio ip(j)=(t-i)+o-i 

TYPfc bOO»( IP(j)»J=1 

TYP£ 600* (P) (IP(J) + 

fcOOO 
1U0 

300 FO^r^AT (/t i > **FW£A|\, va6<»V/^ = *i3F10.3) 

450 F0H*A"M//,ix«*= A«VLS/tXP7r F^eC/CHSVC FPEQ TA«Lt 

500 FGRMAT(/♦1X»10 (}X ♦ lb)) 

600 FORMAT(IX.]O(1X,F^,1)) 

700 FOh-MT<//.)Xf*7»-F. SAMPLt C*N NCT PF. POTSSON ??t) 
END 
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A.3 K0LM0G.F4 POSTPROCESSING PROGRAM 

C THIS KPr,6«=AM WAS LHVELOFtP RY Ll SHIN YUAN, TRANSPORTATION 

C SYSTEM CFfsTEC. CU ♦ CAMt»PjCG£» MASS.» MAY 1976. 

Cl. This pf-CG*AN CO^P^H'Ifib Thfe r.fcSEKVEC WAITING TIME DISTRIBUTION 

Cl. talTH IHt nijEltING MODEL GENERATED WAITING TIME CISTRIBUTION USING 
Cl. KOLMObCPOFF TEST . 

ClMfcNSJO*- ObFPC(<:UO) 

no iooo i= 

r,hFwu<i)=o 

CFK'XT )=r, 

1000 

C. TNPtiTS FROV OLtliF. ING MCDEL : 
TYPE 6C00 

fcOOO FOWmaj f/,iXt*NL»«bEf« Of CLASSES HY GUEUEING MOUtL = 
ACCF.PT 4100<KQ 

WKITfc. (11.4100)NH 

TYPE ^lun 

MOO FO«MM(/.J^t*TYHf IN THF». ONE AT A TIME wITH -1. AS ThE 1ST*./) 

«a?10) (OFwC. (1) 
<F7.t) 

(T3) 
format (C7.c» 

C. FACTOri=r*UFliFlN0 UK I I T In t/OtcERVEC UNIT TIME. 

TYPti f«4no 

-FORMAT (/,)>. /FACTO = 

ACCEPT 

C. INPUTS FF-O" OfcSFRVED C/>TA : 

J = l 

SFHEi5=0. 

TYPE 6300 

6300 fG*MAT</tlX.*TYPF IN OPS VALLE t FHEO 1 PAIR AT A TIME 
20 00 CClNl INUF 

ACCEPT 4?^(.'»C»:!SV«FhtG 

WhiTh ( ^(^akOJCPbVtF 

IF (Ow^V.LT.-O.ODGC TO 21T 0 

CTOh*1.F: 

JGO TC 3100 

Q*FGEO 

GO TC ?0P0 

GtiFKQCjl 

J=IOHSV 

GO TO 2000 

CCMlfcUF 

SFREiJM./SFREG 

&1 no ??.oo t=i»icpsv 
I)=OeFhirj< 
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2200 CONTINUF 

C, GET MAX ABS DEVIATE FOR TEST J 
DMAX=0, 

DO 2300 I=2»IOESv 

IF(OBFPQ(I)»LE,0.000G01)Go TO 2300 

IF(QFRQ(I),LE.O,000001)QFPC<I)=1. 
0EV = ABS(C6FRC(I)-0FRG (I)> 
IF(D£V.GT.DMX)DwAX=CEV 

2300 CONTIN'UF 
FN=N 

SQkTN=SORT<FN) 

TYPE bO0O»N»SQRTN»DMAX 

5000 FORMAT (>/f IX, 
TYPE S100 

5100 FORMAT(/•lX»*ORSEWVtC : *) 
TYPE SgOOt(CBFRG(I)tI=ltInfcSV) 

5200 FORMAT 

TYPE 

5300 FORMAT(/,IX,/COMPLIED : *) 

TYPE 

END 

= * t I4fF 10.5.F9.5) 

230 Copies 
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