AIRPORT FACILITY QUEUING MODEL VALIDATION

Li Shin Yuan
Lawrence J. McCabe
U.S. Department of Transportation Transportation Systems Center
Kendall Square
Cambridge MA 02142

MAY 1977

INTERIM REPORT

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

Prepared for
U.S. DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION
Office of Systems Engineering Management Washington DC 20591

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

PREFACE

This study was undertaken as part of Project Plan Agreement FA-632. One objective of this program is the development and testing of techniques to evaluate airport landside congestion parameters such as delay. This analysis provides a method of determining delays arising from queuing. Results contained in this report should be considered as preliminary and indicative of further development, especially where multi-server landside facilities require analysis.

The authors would like to express their appreciation to the Program Manager, Mr. Mark Gorstein, for his support and constructive criticsm.
metric conversion factors

TABLE OF CONTENTS

Section Page

1. INTRODUCTION 1
2. THE QUEUING MODEL 2
2.1 Model Selection 2
2.2 Neuts G/G/1 Model 4
2.3 Supporting Programs 6
2.3.1 Preprocessing Program CHISQ.F4 6
2.3.2 Postprocessing Program KOLMOG.F4 6
3. MODEL VAL[DAT]ON 8
3.1 Deficiencies in the Field-Observed Data 8
3.2 Test Procedure 9
3.2.1 T-Test for Means 9
3.2.2 Kolmogroff Test for Distributions 10
3.3 Facilities Tested 11
3.3.1 Security Check. 11
3.3.2 UAL Express Check-In 15
3.3.3 Braniff Gate 23
4. CONCLUSION 29
APPENDIX - PROGRAM LISTINGS 31

LIST OF ILLUSTRATIONS

Figure1. Observed Arrivals at Security Check12
2. Security Check Waiting Time Distribution 16
3. Observed Arrivals at UAL Express Check-[n 18
4. UAL Express Check-In Service Time Distribution 19
5. UAL Express Check-In Waiting Time Distribution 22
6. Observed Arrivals at Braniff Gate 25
7. Braniff Gate Service Time Distributions 26
LIST OF TABLES
Table Page

1. OBSERVED WAITING TIME (IN SECONDS) AT SECURITY CHECK FRIDAY, JANUARY 23, 1976, 1500-2000 HOURS 13
2. SECURITY CHECK COMPARISON 17
3. OBSERVED WAITING TIMES (IN SECONDS) AT UAL EXPRESS CHECK-IN, FRIDAY JANUARY 23, 1976, 1500-2000 HOURS 20
4. UAL EXPRESS CHECK-IN COMPARISON 24
5. OBSERVED WAITING TIME (IN SECONDS) FOR ALL GATES, SUNDAY, JANUARY 25, 1976, 1000-1500 HOURS 27
6. BRANIFF GATE COMPARISON 28

EXECUTIVE SUMMARY

An analytical queuing model was examined for accuracy in predicting one of the major measures of airport congestion, namely, the waiting time at a landside facility. The particular model chosen is applicable to a single channel server whose arrival and service time processes have general distributions. This model was selected because
a. Arrival time distributions obtained from measurements were tested and found to be non-Poisson.
b. A potentially wide range of applicability was desired because of the many service facilities present at the landside.
c. This model was available as a computer program which furnished waiting time and queue length distributions directly.

In order to investigate the feasibility of using this queuing model as a tool for evaluating landside congestion, statistical comparisons were performed to determine whether there is any correspondence between observed field data and model predictions. Using observed passenger arrival rates and service time distributions obtained at Denver-Stapleton Airport as the inputs, the model validation was done by comparing predicted waiting times at the security station, express check-in, and one boarding gate. Using the t-test, agreement was obtained at the 5 percent level of significance for the mean values of the first two facilities. More comprehensive data collection is required to validate the probability distributions of the waiting time and queue length.

This single channel queuing model may be viewed as the first step in evaluating landside congestion using an analytical approach. Further developments in this area would include multi-channel facility modeling and the linking of various facilities to formulate a congestion model for the complete landside.

1. INTRODUCTION

Some of the Denver-Stapleton International Airport passenger data which were collected for simulation model validation were used to determine the validity of an analytic model. This was done by comparing the analytically computed queue length and waiting time distributions with the actual observed queue length and waiting time distributions in the field. It was hoped that this validation work would lead to the determination of the feasibility of using analytic models for estimating the level-of-service of the landside facility.

The input data for the analytic model are the actual arrival rates and the actual service time as observed in Stapleton International Airport in Denver. The outputs of the model are the queue length and waiting time distributions computed for each facility under study. The waiting time output was compared with its field observed counterpart for model validation. It is believed that this quantity is one of the most meaningful indicators of the level of service.

2. the queuing model

2.1 MODEL SELECTION

There are six basic characteristics which can be used to specify a queuing model:

1. Arrival Pattern: The arrival pattern of the "customers" could be deterministic (D) or described parametrically as a Poisson Distribution (or exponential arrival time) (M) or general (G). For many airport landside facilities the arrival pattern is most likely general (G).
2. Service Pattern: The service time pattern of each server channel could also be deterministic (D), exponential (M), or general (G). In the airport landside situation it is most likely general (G).
3. Number of Service Channels: The queuing process may take place at a facility with a single channel or a number of parallel channels. In the airport landside both the single and parallel channel cases are applicable.
4. System Capacity: Facilities may accommodate a limited queue size or the maximum queue size may be unbounded. Since it is most likely that no airport landside customers will be turned back, the maximum possible queue length may be considered infinite for most queuing situations of interest.
5. Number of Service Stages (in series per each channel): Each channel may have a single stage or multiple stages connected in series. Both single stage and multi-stage processes are manifested by the airport landside.
6. Queue Discipline: Queue discipline can be classified into (a) first-come-first-served (FCFS), alias first-in-first-out (FIFO); (b) service in random (SIRO); (c) last-come-first-served (LCFS); (d) priority (PRI); and (e) general discipline (GD). The airport landside system operates mostly on a first-come-firstserved (FCFS or FIFO) basis, with some priority (PRI) treatments.

Based on the six basic characteristics, the most desirable model for the airport landside system would be a model with (1) general arrival pattern, (2) general service time pattern, (3) multiple channels, (4) infinite or finite maximum queue length, (5) single or multiple stages, per channel, and (6) first-come-first-served and/or priority service discipline. In queuing theory notation this most desirable model is represented as:
$G / G / N_{1} /\left(\stackrel{\infty}{N}_{2}\right) /\binom{$ FCFS }{PRI} with multiple-stage per channel
It should be realized that the so called most desirable model is probably the most complicated model one would ever attempt to utilize.

The development of analytic queuing models appear to have been influenced strongly by two factors: the origins of models in the study of congestion in telephone systems and the question of what is easy and possible in mathematical analysis. Therefore, many assumptions commonly made in queuing analyses are precisely those which seem reasonable in constructing queuing models associated with telephone systems and those which make the models mathematically solvable. As a result, analytic models which deal with multiple channels or servers are generally restricted to Poisson arrivals and exponential service times (i.e., $M / M / N$). Models which deal with general arrivals and general service times are presently limited to single channel ($G^{\prime} / G / 1$) cases.

The simplifying assumptions used in $M / M / N$ model development are not always applicable to queues other than those encountered in telephone systems; they are particularly inappropriate when the customers and scrvers are really people as in the airport landside. In a telephonc system the process of switching channels or jockeying is carried out automatically and rapidly, whereas in many multicounter operations there are no easily defined rules, and people move with inertia. This was observed visually at Denver-Stapleton International Airport where queues were formed at ticket counters at the same time that servers were observed idle. This point was further verified numerically by the field data. Out of five sets
of arrival data tested, only one set was Poisson, and none of the service times observed were exponential. This was the main reason why $G / G / 1$ model was selected over $M / M / N$ for validation. Although this single channel model can represent only a limited number of facilities in the airport landside, it was chosen to determine whether there is any resemblance between observed field data and the model predictions. In addition, a multiple-channel G/G/N model is currently under investigation.

2.2 NEUTS G/G/1 MODEL

A readily available G/G/1 queuing model was chosen for model validation. This model, developed by Professor Marcel F. Neuts of Purdue University, accepts general arrivals and general service times and computes the time dependency features of a single server discrete time queue with a finite queue length. The model was coded in Fortran IV and it resides on the DEC-10 computer system at Transportation Systems Center/U.S. Department of Transportation (TSC), Cambridge, Mass. The program listing is included in the appendix.

In the model, the numbers of arrivals during successive unit time intervals are independent, identically distributed random variables. These are expressed as the probability of a number of customers joining the queue during a specified unit time. The service times of successive customers are also independent and identically distributed random variables with a given probability density. The queue discipline is FCFS.

For any given time, n, the queue length is denoted as X_{n} and the residual service time (i.e., the number of additional units of service time required by the customer in service) is denoted by Y_{n}. The joint probability density function of queue length X_{n} and residual service time Y_{n} is denoted as $P_{n}(i, j)$, where

$$
P_{n}(i, j)=P\left\{X_{n}=i, Y_{n}=j\right\} .
$$

Recurrence relations were derived which compute $P_{n+1}(i, j)$ from $P_{n}(i, j)$ under all possible conditions of i and j. This joint
probability density function is used to compute the distributions of queue length and waiting time. These are the basic outputs of the model.* As stated before, the model has been translated into a Fortran IV program. The inputs to the program are:
a. The size of the waiting room L1. In the program, Li is limited to 100 customers in the system.
b. The maximum number, K, of arrivals per unit time. In the program, K is limited to be less than Ll arrivals.
c. The probability, $P(J)$, that J customers join the queue per unit time, where $J=1,2, \ldots K$.
d. The maximum service time, L2, in terms of time units. In the program, L2 is limited to be less than 31 time units.
e. The probability, $R(J)$, that a service time lasts for J units of time, where $J=1,2, \ldots$ L2.
f. The probability, PO, that no customers arrive during a unit of time.
g. The initial queue length, $I 0$, and the initial residual service time, Jo.
h. The program control parameters, including the number of time units to be run and the output option selection parameters. The full output of this program includes the following:
a. The mean queue length as a function of time.
b. The distribution of queue length as a function of time.
c. The mean waiting time as a function of time.
d. The distribution of waiting time as a function of time.
e. The joint density of the queue length and the residual service time as a function of time.

[^0]Any one or the combination of the above output items can be printed out according to the user-selected options.

2.3 SUPPORTING PROGRAMS

In addition to the queuing model itself, two supporting programs were written. One of them is used to process the raw data for queuing model input. The other program is used to compare the model-predicted waiting time distribution with the field-observed waiting time distribution.

2.3.1 Preprocessing Program CHISQ.F4

This program was written for preprocessing the raw arrival data which.were gathered in Stapleton Airport. The functions of this program are:
a. Convert observed arrivals into an arrival distribution (histogram).
b. Determine the sample mean and variance of the data.
c. Perform X^{2}-test (chi square test) on raw data to determine whether the arrivals are from a Poisson process.
d. Convert the arrival distribution into compatible units for the G/G/1 model.

This program was necessary because the raw data were not directly applicable to the $G / G / 1$ model. The test of Poisson was incorporated in this program, because if the majority of the arrivals were Poisson and the service times were exponential the applicability of the analytic approach would be greatly broadened by using $M / M / N$ models. This program was written in Fortran IV language and resides on the DEC-10 computer system of TSC under the file name CHISQ.F4. The program listing is included in the appendix.

2.3.2 Postprocessing Program KOLMOG.F4

This program was written to compare the model-predicted waiting time distribution with the field-observed data. The computed and the observed waiting time distributions are the inputs to this
program. The Kolmogroff statistic* is computed from the input data. Based on this statistic a decision is made whether to accept or reject the hypothesis that the predicted waiting time distribution can be used to represent the field observed waiting time distributions. The outcome of this test determines whether or not the queuing model can be used to represent airport landside facilities.

As before, the program was written in Fortran IV and resides on the DEC-10 computer system at TSC under the name of KOLMOG.F4. The program listing is also included in the appendix.

[^1]
3. model validation

3.1 DEFICIENCIES IN THE FIELD-OBSERVED DATA

Data deficiencies are discussed here for two reasons. First, because of these imperfect data a judgement of the validation results should be qualified accordingly. Second, if more data are to be obtained for further analytic model validation, those deficiencies are the pitfalls to be avoided. It may be noted that the field data were not taken specifically for the purpose of analytic model validation but rather for a simulation validation. This would probably account for some of the reasons for a deficient data set. The major problems of the data, in addition to the expected nonstationarity, are listed as follows:
a. The majority of arrival data was recorded as number of arrivals per 5 minutes. That means that inter-arrival times can be erroneous by as much as 5 minutes. However, because the service times are on the order of seconds, there is an incompatibility in the accuracy of the two sets of data. A 5 -minute inaccuracy in data is too coarse to draw definitive conclusions.

Waiting times were grouped in 5 -second intervals to form distributions. Again, compared to the expected service time this is also too coarse for detailed validation. It is suggested that the arrival times and the waiting times for each customer should be recorded and aggregated in 1 -second intervals.
b. A variable number of service channels were used during the data-taking period. The number of servers changes as the demand slackened or increased.
c. The data are incomplete. For all the facilities, the queue length data are missing.
d. Observed data were arbitrarily sampled. This may or may not give a reasonable representation of the population on which the data were taken.

In spite of these deficiencies, three facilities were selected for model validation. They are the UAL express check-in, the security check, and the Branniff gate.

3.2 TEST PROCEDURE

The field observed arrival data and the service time data were preprocessed to conform with the input requirements of the $G / G / 1$ model. Based on the preprocessed data the waiting time distribution and the queue length distribution are computed by the model. The predicted waiting time distributions and their expected values are compared with the field-observed counterparts. The comparison of the mean is done by the t-test and the Kolmogroff test is used for the distribution.

3.2.1 T-Test for Means

The mean value of the predicted waiting time is compared with the observed mean waiting time using the t-test. The null hypothesis for this test is that the population mean of the observed waiting times is equal to the predicted value on the basis of a random sample. The t-statistic is defined as:

$$
t=\frac{\bar{x}-a}{s / \sqrt{n}}
$$

where
$\bar{x}=$ sample mean
$a=$ predicted value of mean
$s=s t a n d a r d$ deviation of sample
$\mathrm{n}=$ number of sample points
The absolute value of the t-statistic is compared with a critical value $\dot{t}_{\alpha / 2}, n-1$ for a given significance level α. The null hypothesis will not be rejected (i.e., it will be accepted that the mean waiting time equals a) if the absolute value of t-statistic is less than $t_{\alpha / 2, n-1}$. The numerical values of this critical
statistic may be found from standard statistical tables.* The significance level α is usually set at 0.05 .

3.2.2 Kolmogroff Test for Distributions

For a given sample x of size n, such that

$$
x_{1} \leq x_{2} \leq \cdots \leq x_{n}
$$

a cumulative distribution function, $G_{n}(x)$, is defined by the following:

$$
\begin{aligned}
G_{n}(x) & =0, x<x_{1} \\
& =r / n, x_{r} \leq x \leq x_{v+1} \\
& =1, x \geq x_{n} .
\end{aligned}
$$

If the sample x comes from the completely specified postulate, $F(x)$, then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{G_{n}(x)-F(x)=0\right\}=1, \text { for all } x
$$

Based on this fact, a test of fit for $F(x)$ is constructed by defining the Kolmogroff statistic,

$$
D_{n}=\sup _{x}\left|G_{n}(x)-F(x)\right|
$$

If the value D_{n} is larger than a critical value (as a function of n) ($\left.d_{n}\right)_{c}$, the null hypothesis that the sample x comes from the postulate $\mathrm{F}(\mathrm{x})$ will be rejected. For significance level $\alpha=0.05$ the critical value is ${ }^{+}$

[^2]$$
\left(d_{n}\right)_{c}=\frac{1.36}{\sqrt{n}}, \text { for } \alpha=0.05
$$

The observed waiting time distributions are tested by the Kolmogroff test.

3.3 FACILITIES TESTED

3.3.1 Security Check

3.3.1.1 Observed Data - Data were taken on January 23, 1976, between 1500 and 2000 hours. The arrivals at this station were aggregated over 5 -minute intervals, which resulted in 59 data points. From these, the histogram shown as Figure 1 was produced. A chi-square test of the data showed no agreement with a Poisson process, and thus the G/G/1 model was applied. Two channels were generally in service; however, at infrequent intervals only one channel was operating. The service time per channel was operating. The service time per channel was assumed to be a constant 8 seconds per customer. Waiting times were recorded for 726 arrivals sanpled from a total of 3,511 actual patrons. The frequency distribution of waiting times is shown in Table 1.

3.3.1.2 Test Results - In order to get better resolutions, the

 arrival rate was converted from the number of arrivals per 5 minutes to number of arrivals per 4 seconds. This is done by dividing the observed number of arrivals (per 5 minutes) by 75. It is true that the resulting arrivals may not represent the actual arrivals if better resolution were used when the data were taken. However, this is probably the best that can be done with the existing data.In the majority of times, two channels were in operation, each with a constant 8 seconds service time (estimated). The service time used in the analytic model was assumed to be 4 seconds for 97 percent of time, 12 seconds for 2 percent, and 20 seconds for 1 percent of time. It is believed that this service time distribution used in the analytic model validation is more realistic than the estimated constant service time.

FIGURE 1. OBSERVED ARRIVALS AT SECURITY CHECK

- TABLE 1. OBSERVED WAITING TIME (IN SECONDS) AT SECURITY CHECK, FRIDAY, JANUARY 23, 1976, 1500-2000 HOURS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1-20	0	0	0	0	0	0	0	0	0	3	2	5	5 3							
21-40	1	10	6	5	3	4	6	4	2	6 3	3 2	7 3	3	3 1	$\begin{aligned} & 7 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	5 3	2 1	2	4
41- 60 $61-40$	3	4	3	?	3	$\frac{1}{1}$	5 0	2	$\frac{1}{2}$	3 1	2	3	0	1	2	1	3	${ }_{0}$		0
61- $8: 100$	0	0	0	0	1	0	-	0	$\stackrel{\square}{0}$	1	0	0	0	2	1	1	0	0	0	1
101-120	c	1	!	2	1	0	c	1	0	0	1	0	1	0	0	0	0	0	0	0
121-140	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
141-160	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0
161-180	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

宙
No. of values $=726$ (sampled from 3511 passengers)
No. of zeros $=505$
Mean $=11.63$ seconds
STD. Dev. $=23.05$ seconds
Minimum $=0$, Maximum $=163$ seconds
69.5% waited less than 10 seconds
99% waited less than 105 seconds

The comparison of mean and distribution are done separately as follows:
a. Test for Mean Wating Time: The observed 11.63 sec onds mean waiting time at security check is compared with the modelpredicted mean waiting time of 10.41 seconds by the t-test. The t-statistic is computed as

$$
\begin{aligned}
t & =\frac{\bar{x}-a}{s / \sqrt{n}} \\
& =\frac{11.63-10.41}{23.05 / \sqrt{726}} \\
& =1.425 .
\end{aligned}
$$

The critical value is

$$
\mathrm{t}_{\alpha / 2, \mathrm{n}-1}=\mathrm{t}_{0.025,725}=1.960 .
$$

Since t is less than $t_{\alpha / 2, n-1}$, there is no reason to reject the hypothesis that the G/G/1 model can be used to predict the mean waiting time for the security check tested.
b. Test for Distribution: The observed and the computed waiting time distributions are compared by Kolmogroff test. The Kolmogroff statistic is computed by the program KOLMOG.F4 as follows:

$$
\mathrm{D}_{\mathrm{n}}=0.08099, \text { with } \mathrm{n}=726
$$

The critical value is

$$
\begin{aligned}
\left(d_{n}\right)_{c} & =\frac{1.36}{\sqrt{n}}=\frac{1.36}{\sqrt{726}} \\
& =0.055, \text { for } \alpha=0.05
\end{aligned}
$$

Since D_{n} is greater than $\left(d_{n}\right)_{c}$, it is concluded that the $G / G / 1$ model cannot be used to predict the waiting time distribution at the security check tested.

The field observed and the computed waiting time distributions are plotted in Figure 2. It is noticed that for waiting time less than 10 seconds the field observed curve is flat. This flat portion is the cause of the high value of Kolmogroff statistic D_{n}. Checking with the observed raw data it is found that there are many (505 out of 726) who went through security check without any wait. All of the rest waited 10 seconds or more. However, there were no persons recorded as waiting less than 10 seconds if they were waiting in line. This most likely indicates that the person who took the data arbitrarily recorded anything less than 10 seconds as 0 seconds. This casts some doubt on the validity of this portion of the field data, which therefore was omitted in comparison. The observed and the computed results are summarized in Table 2.

3.3.2 UAL Express Check-In

3.3.2.1 Observed Data - Data were taken on January 23, 1976, between 1500 and 2000 hours. The arrivals were taken in 5 -minute intervals. The histogram of the arrivals is shown in Figure 3. The arrivals do not agree with a Poisson process.

A total of 58 arrival intervals were observed. The number of channels in service varied between one and two. The service time per channel was in cumulative distribution form. (See Figure 4.) There were 192 arrivals sampled from a total of 337 actual passengers. (See Table 3 for details.)
3.3.2.2 Test Results - As before, the arrival rate was converted from number of arrivals per 5 minutes to number of arrivals per 10 seconds for better resolution. The service time distribution was deduced from the observed cumulative distribution plot (Figure 4).

The effect of the variable number of channels in operation was compensated by multiplying the arrival rate by a factor corresponding to the average number of servers in operation. The comparison of mean and distribution are done separately as follows:

CUMULATIVE PROBABILITY OF WAITING TIME

TABLE 2. SECURITY CHECK COMPARISON

OBSERVED FIELD DATA	COMPUTED RESULTS	CONSISTENCY
Mean Waiting Time 11.63 seconds	10.41 seconds	yes ($\alpha=0.05$)
Waiting Time Distribution Std. Dev. $=23.05 \mathrm{sec}$. 69.5\% with zero wait 69.5% waited less than 10 sec. 99% waited less than 105 sec.	8.4\% waited less than 4 seconds 57.9% waited less than 10 seconds 99% waited less than 48 seconds	no ($\alpha=0.05$)
Queue Length $=$ No Data	mean $=2.35$ 99% of time queue length is less than 11.	-

FIGURE 4. UAL EXPRESS CHECK-IN SERVICE TIME DISTRIBUTION

TABLE 3. OBSERVED WAITING TIME (IN SECONDS) AT UAL EXPRESS CHECK-IN, FRIDAY, JANUARY 23, 1976, 1500-2000 HOURS

FREQUENCYOISTRIBUTION

	1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45	46-50	51-55	55-60
$1-60$ $1-120$	10	6	11	6	7	8	5	8	7	7	8	
61-120	3	3	6	6	0	4	5	2	3	2	8 1	2
$121-180$ $141-240$	5	2.	0	1.	-3	1	0	3	3	0	1	0
$161-240$ $241-240$	2	1	1	0	. 0	1	-0	$\cdots 1^{-}$	0	0	0	0
301-360	0	0	0	9	1	0	0	0	0	1	0	0
361-420	$\cdots 0^{-}$		0	0	0	- ${ }_{0}^{1}$	- 0	0	0	0	0	0
42.1-440	0	1	0	0	0	0	0 0	0	0	0	0	0

No. of values $=192$ (sampled from 337 passengers)
No. of zeros $=35$
Mean $=59.75$ seconds
Std. Dev. $=68.15$ seconds
Minimum $=0$, Maximum $=427$ seconds
18.23% with zero wait
26.6 .\% waited less than 10 seconds
99% waited less than 330 seconds
a. Test for Mean Waiting Time: The observed 59.75 seconds mean waiting time at UAL Express check-in is compared with the model-predicted mean waiting time of 52.68 seconds by the $t-t e s t$. The $t-s t a t i s t i c$ is computed as:

$$
\begin{aligned}
t & =\frac{\bar{x}-a}{s / \sqrt{n}} \\
& =\frac{59.75-52.68}{68.15 / \sqrt{192}} \\
& =1.437 .
\end{aligned}
$$

The critical value is

$$
t_{\alpha / 2, n-1}=t_{0.025,191}=1.960
$$

Since t is less than $t_{\alpha / 2, n-1}$, there is no reason to reject that the G/G/1 model can be used to predict the mean waiting time for the UAL express check-in tested.
b. Test for Distribution: The observed and the computed waiting time distributions are compared by Kolmogroff test. The Kolmogroff statistic is computed by the program KOLMOG.F4 as follows:

$$
\mathrm{D}_{\mathrm{n}}=0.11894, \text { with } \mathrm{n}=192
$$

The critical value is

$$
\begin{aligned}
\left(d_{n}\right)_{c} & =\frac{1.36}{\sqrt{n}}=\frac{1.36}{\sqrt{192}} \\
& =0.098, \text { for } \alpha=0.05
\end{aligned}
$$

Since l_{n} is greater than $\left(d_{n}\right)_{c}$, it is concluded that the $G / G / 1$ model cannot be used to predict the waiting time distribution at the UAL express check-in tested.

The field observed and the computed waiting time distributions are plotted in Figure 5. Note that if the waiting times which are less than 30 seconds are treated the same, the predicted

CUMULATIVE PROBABILITY OF WAITING TIME

waiting time distribution is a rather close fit to the observed waiting times.

The observed and the computed results are summarized in Table 4 for better comprehension.

3.3.3 Braniff Gate

3.3.3.1 Obscrved Data - Data were taken on January 25, 1976, between 1000 and 1500 hours. Forty-four arrivals were observed and recorded to the nearest minute. The histogram of these is shown in Figure 6. A chi-square test showed a lack of agreement with a Poisson process. The service time per channel is shown as Figure 7 in cumulative distribution form. In this case, only one channel was in service. Braniff gate waiting time data were combined with all other gate waiting times to form a single distribution shown in Table 5. There were 368 customers sampled from a total of 1,498 . This combined dsitribution was used for comparison with the G/G/1 model.

[^3]TABLE 4. UAL EXPRESS CHECK-IN COMPARISON

	OBSERVED FIELD DATA	COMPUTED RESULTS	CONSISTENCY
$\underset{A}{\sim}$	Mean Waiting Time 59.75 seconds	50.93 seconds	yes ($\alpha=0.05$)
	Waiting Time Distribution Std. Dev. $=68.15 \mathrm{sec}$. 18.23% with zero wait 26.6% waited less than 10 sec . 99% waited less than 330 sec .	45.1% waited less than 10 sec . 99% waited less than 340 sec .	no ($\alpha=0.05$)
	Queue Length: No Data	$\text { mean }=1.0$ 99% of time the queue length is less than 5.	-

FIGURE 6. OBSERVED ARRIVALS AT BRANIFF GATE

FIGURE 7. BRANIFF GATE SERVICE TIME DISTRIBUTIONS

TABLE 5. OBSERVED WAITING TIME (IN SECONDS) FOR ALL GATES, SUNDAY, JANUARY 25, 1976, 1000-1500 HOURS

	1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45	46-50	51-55	56-60
1-60	10	12	22	17	9	17	7	15	7	4	10	${ }_{8}^{8}$
61-120	6	2	8	3	2	7	5	5	4	0	2	0
12!-180	2	1	3	?	1.	2	0	2	3	1	0	1
18i-240	1	2	1	-0	0	2	2	2	0	1	1	0
241-300	4	3	2	1	0	1	1	0	0	0	1	1
381-360	1	1	0	0	1	0	0	1	- ?	0	0	0
361-420	2	0	1	0	1	0	2	0	- 1	0	1	1
421-480	1	0	1	0	0	1	0	0	0	0	1	0
481-540	0	0	0	1	0	0	0	0	0	0	0	0
1541-600	0	0	0	0	0	0	1	0	1	0	0	0

No. of values $=368$ (sampled from 1498 passengers)
No. of zeros $=120$
Mean $=68.96$ seconds
Std. Dev. $=108.79$ seconds
Minimum $=0$, Maximum $=585$ seconds
32.6% with zero wait
38.5% waited less than 10 seconds
99% waited less than 455 seconds

TABLE 6. BRANIFF GATE COMPARISON

OBSERVED RESULTS (ALL GATES)

```
Waiting Time:
        Mean = 68.96 seconds
        Std. Dev. = 108.79 seconds
        32.6% with zero wait
        38.58% waited less than 10 seconds
        99% waited less than 455 seconds
Queue Length:
    (No Information)
```

COMPUTED RESULT (BRANIFF GATE)

Mean $=33.85$ seconds
25.1% waited less than 10 seconds 99% waited less than 160 seconds Mean $=1.95$

99\% of time the queue length was less than 9.

4. CONCLUSION

As mentioned before, the field data were not collected specifically for the analytic model validation and thus were not ideal for the purpose of this study. Instead of taking the number of arrivals per 5 minutes and taking the number of delays in a time bracket, the data for actual delay in seconds for each passenger would be more suitable for analytic model validation.

Because of the single channel limitations, there are many facilities in the airport landside which may not be represented by the G/G/1 model (e.g., ticket counter, baggage claims, curb sides). However, despite the less than desirable field data, for all three facilities tested the G/G/l model adequately predicted mean values of the waiting time. Moreover, the tested facilities include those whose numbers of servers were changed to accommodate demand changes. It seems to suggest that as far as the mean values are concerned, the G/G/1 model can be used for waiting time predictions. The predictions of waiting time distributions, however, were not good. The model did not do well enough to pass the Kolmogroff test, possibly because of the reasons described above.
A. 1 YNEVTS.F4 - G/G/1 MODEL

```
C THIS PROGRAM WAS LEVELOFEC GY MARCEL F. NEUTS - DEFART-
C ment of statictics - horlle unjvefsity - wfst lafayette-
C INOIANA. OCTODER 1971.
C
C this frogiamm romflifs the time cependent ffatures of a
C sinfle semver discrett tine wlfle with a finile waiting-
c ROOM.
with the puEsfnt cimension statements a wattinghoom of
c size up to onf hlanfel may ft citudied. the density of the
C service time can me clncenthatec on up to thifty points.
C the full cutfflt cf ihis frogmam incluces the followingv
C
C l. the mean gheue lenetr at time N.
C 2. thf gistriailica of the gufve length at time N.
3. the medn, waItING:TINE AT tiNF N.
C 4. the listmifuticn ff ite maitingilme at time N.
C 5. the jcint ransity lo tre clfle lengjt am:d the rg.sidual.
    sehvice tive at.tint N.
Al.l these apf confutfl fGm n li, to a specifiec value nNa.
C
C Hy lge gF jrt vafiOlS. OHIIGNS. LISTEU HELO%, SOME OF THESE
```



```
C
c the theceftical levellringai uf the lischetf time gutut
Witr af; linroundel glele lemgit nay ee founo inv
c.
c * sttlla c. daffanos anc nakcel f. nelts
C * A Sinfle sefver dlele in disrfete time *
C * CaHIELS cu fHatFE fe feghencme cheratiunmelle --1991.
c
C the foliowing is a cginaniun enter to itE brestent proghamv
C
c # mancfl f. nflts
```



```
C * AnALY\leqIS**
C * Plindue minfrimaff Geritg - dfft. cf siatistics.
C " PLHCLIF UN,IVFKSITY - wESI LAFRYETIE - IN - 47907
c
```



```
    INTEGEL GOT(IO)
```



```
C
C IN CHDER TS WEITE OLT THE JOINT DENSITY OF IHE OUEUL LENGTH
C AND THE RESIUH:AL SHFVICE IIML, SET CPT(I)=1 - OTHERWISE
C SET ORT(I)=0
C
    HEAC(4.090) (FT(1)
C
C IN OKDER TO WFITE CLT THE LISTOIHLTION OF THE SAITING-
C TIME, SET OPT(?)=1 - CTHESWISE SEI CPT(2)=C
C
    KEAD(5,G9G) CFT(?)
C
C THE USEH MAY W.JST TC COMPLTE AHC WEITE THE UISTRIPUTION OF
C ThE wAITINrTINE CNLY at IIME FOINTS WHICh AKE A MULTIrLE OF
C A CCNSTAINT AH. THIS TC SAVE ON HHOCESSING TIME AND ON THE
C NUMFEK OF LINFG CF CUIPLI. IN THIS CASE THE ICFNTIFIFK
C OPT(3) SHOLLC HE SET EMLAL 1O MNE AND THE NUMEER NR SHOLLU EE
C GIVEN: UPI(3) ANC NK ARE TU HE GIVEN IN AN I],IZ FORMAT.
C
    HEAC(b.997) CFT(3),NK
    XNR=NK
    KTEST1=OPT(1)
    KTESTZ=OPT(厄)
    KTEST3=ONT (3)
    IF(KTEST3.FC.I) KIFSTE=0
    IF(KTEST3.F(V.O) KTFST4=0
C
```



```
C
C Ll IS THE SILF OF THE WAlJINGFR:CM. LI IS LT. 10l
    REAL(5.1001) LI
C
C LC IS THE NUMOER CF PCINTS ON WFICF THE UE,NSITY OF THE
C SERVICE TIME IS CCNCFNTHATED. İ IS LT. 3l
    READ(5,10N1) L?
C
C K IS THE MAXIMUM NUNAER OF ARRIVALS PER UNIT GF TIME.
C K SHOLLD bF. AT LEAST CNE AND STEICTLY LESS THAN LI.
C
    REAO(5,10N1) K
C
C R(J) IS THF PFOBAEILIIY THAT A SERVICE TIME LASTS FOR J
C UNITS OF TIME.
C ONE SHOLLD VEEIFY EEFCHEHAND THAT THE SUM p(1) & ...f(LZ)
C Is folal to oaE.
C
    REAC(5.1002) (R(J),J=1.LC)
C
C P(J) IS THE POORAEILIIY THAT J CUSTCMERS JOIN THE OUEUE
C DURING A UNIT OF TIMF.
C THE INDEX J PIINS FFOM ONE TO K.
```

```
    REAL(S,10@2) (P(J),J=1,K)
C
C PO IS THE PFOFAGILITY THAI NU CLSTCNERS ARRIVE DURING A
C UNIT OF TIMF.
C ONE SHOULD VECIFY RFFCREHAND THAT FO + P(1) +\ldots. . P(K)
C IS EQUAL TO ONE.
C
            REAC(5,1003) P0
C
C IU IS ThE INITIAL SUELE LEIvGTH.
C JO IS THE INITTAL FESIDLAL SEFVICE TIME.
C IF IO=0, THEN JO=0 ANL CONVERSFLY.
C IO SHOULD NOT EXCEEC LI.
C JO SHOULD NOT EXCEFC LZ.
C
    READ(S.lON1) IO
    HEAO(5,100)) JO
C
C NNN IS THE MAXIMLN TINE PCINT FCR WHICH THE OLEUE
C FEATURES ARE COMFUTED. NNN SHCHLD EE AT LEAST ONE AND
C AT MOST 9999. NOTE HOWEVEF THAT THE PROCESSING TIME
C AND THE NUMBEF OF LINES CF UUTPLT EFOW PROPORTIONATELY }1
c the value of anN.
C
    REAC(5,1004) ANN
    IF(IO.EQ.O.AND.JO.EG.O)GOTO 2001
    PP(10,J0)=1.
    GOTO 2002
2001 POO=1.
2002 N=0
    X11=P0
    DO <l I=1.K
    XI=1
    X11=X11+P(1)
    XI=XI+XI*P(I)
    21 CONTINUE
        DO 2Z J=1.LZ
        xJ=J
        x11=x111+R(J)
        x2=x2+xJ*R(J)
        22 CONTINUE
            x11=x11-2.
            X11=ABS (X11)
            WRITE(3,1014)
            WKITE(3,1022)K,L2.LI
            Nl=0
            WFITE(3,1n07)N1,PO.(J,P(J),J=1,K)
            WRITE(3,1012)
            WRITE(3,1010)(J,R(J), vJ=1,L?)
            WRITE(3,1012)
            WRITE(3.1008)IO.JO
            WRITE(3,1012)
            WRITE(3,1009)NNN
            WRITE(3,1012)
            WRITE(3,1013)\times1,X2
            WRITE(3,1006)
```

```
C #####口IIACNOSTIICS**###
C
    IF(LI.LE.K) GCTC < OOS
    IF(IO.EG.O.ANC.JO.NE.O.OR.IO.NE.O.AND.JO.EQ.OIGOTO 2OOS
    IF(XII.GT..OOOOOI) GOTO 2005
    IF(KTEST3.EQ.1.ANL.NR.LT.2) GOTC 2005
    WRITE(4,3200)
    3200 FORMAT(/-1X,#THE FROGGAM FAS R(N#)
C
C
C
    L11=L1-1
    L21=L訁゙-1
    L22=LC+1
    Ml=Ll*LZ
    Kl=K+1
    0O 13 I=1.Ll
    Y(1,LZ)=0.0
    13W(I)=1.-PO
            IF(K.E.Q.1)GOTO E003
            LO <O J=2.K
            W(I)=W(I-1)-F(I-1)
        20 CONTINUE
C
C at this stage the inflt data fave eeme read in, the
C PF-ARRAY has pEFN INITIALIZEU AND THE INPUT DATA haVE
C EEEN WRITTEN CUT ANC SUEJECTEC TO SCME FUDIMENTARY
C DIAGNOSTIC TESTS. ITE NEXI LINF STAKTS THE MAIN LOOP
C WHICH IS REPEATEC NAN TIMES.
C
```



```
C
    2003 N=N+1
    IF(N.GT.NN:N) STCP
C
C THIS PORTION OF IFF PKOGHAM CGMFUTES THE NFW PP-ARRAY.
C PP(1.J) IS THF PHCPAHILITY THAT AT THE TIME CONSIDEHEU
C IHERE AKE I Ci!StcmEgS IA the SyStEN aND THE RESIDUAL
C SERVICE TIME OF THE ClSTONEF PEING SERVEU IS J.
C THIS IS FOP I HETWEEN ONE ANU I I, FCR J BETWEEN ONE AND
C LZ. tre inEnttfier fou containg the proeagility that the
C QuEUL IS EMETY.
C
    WRITE(3.1000)
    WRITE(3.1n17)N
    WRITE(3.1\cap]E)
    X00=P00+PD (1,1)
    DO 1 I=1.K
    X(l)=F(I);POO+POMFP(I+I,l)
    II=1-1
    [0) з Nu=1.I
    x(1)=x(I)+F(I +I-NL)#FF(NU,1)
    3 CONTJNMF
```

```
    \sigma
    *
```

 4 LO < J=1,1 2.1
    ```
    4 LO < J=1,1 2.1
        Y(I,J)=PC*PP(I,J+I)
        Y(I,J)=PC*PP(I,J+I)
        IF(I.EO.1)GOIC 5l
        IF(I.EO.1)GOIC 5l
    DO S NV=1.II
    DO S NV=1.II
    Y(I,J)=Y(I,J)+D(I-NV)#PP(NV,J+I)
    Y(I,J)=Y(I,J)+D(I-NV)#PP(NV,J+I)
    5 CONTINUE
    5 CONTINUE
    5 1 ~ C O N T I N U E ~
    5 1 ~ C O N T I N U E ~
    ? CONTINUE
    ? CONTINUE
    l CONTINUE
    l CONTINUE
        LC 6 I=Kl.LII
        LC 6 I=Kl.LII
        NU1=I-K
        NU1=I-K
        NUZ=NU1+1
        NUZ=NU1+1
        II=I-1
        II=I-1
        x(1)=F0*RE (I +1,1)
        x(1)=F0*RE (I +1,1)
        UO }7\textrm{Nu}=\textrm{NL
        UO }7\textrm{Nu}=\textrm{NL
        X(I) =x(I) +P(I +I-NL) #PF(NU,I)
        X(I) =x(I) +P(I +I-NL) #PF(NU,I)
    7 CONTINUF
    7 CONTINUF
        DO & J=1.1.21
        DO & J=1.1.21
        Y(I|J)=FO*FF(I•U+1)
        Y(I|J)=FO*FF(I•U+1)
    DC H NV=NI.I, II
    DC H NV=NI.I, II
    Y(I,J)=Y(T,J)+F(I-NV)*HF(Nv,J+I)
    Y(I,J)=Y(T,J)+F(I-NV)*HF(Nv,J+I)
    4 coNTITNF
    4 coNTITNF
    C CONTINIJF
    C CONTINIJF
    G CCNTINUE.
    G CCNTINUE.
    X(L.I)=n.l
    X(L.I)=n.l
    1)0 10 A:|=1, K.
```

 1)0 10 A:|=1, K.
    ```


```

 lu cGMIINHt
    ```
    lu cGMIINHt
    (i) 11 J=1.LZ1
    (i) 11 J=1.LZ1
    Y(LI,J)=F!:(LI,J+I)
    Y(LI,J)=F!:(LI,J+I)
    DO lŻ N:== .K
```

 DO lŻ N:== .K
    ```


```

 12 CCNTINUE
    ```
    12 CCNTINUE
    11 CONTIMIF
    11 CONTIMIF
    POO=PU*)Gの
    POO=PU*)Gの
C
C
C 7(1) CONTAIAS FIHST IHE LENSITY ANC NEXT THE CISTRIGUTICN
C 7(1) CONTAIAS FIHST IHE LENSITY ANC NEXT THE CISTRIGUTICN
C CF JHE (.Lt.UF I ENEIT QI THt TIN: HCINT CONSIDEAEO.
C CF JHE (.Lt.UF I ENEIT QI THt TIN: HCINT CONSIDEAEO.
C XMN CONIAING THF wfAN '.LELE LE:NGIH AT THE TIME POINT
C XMN CONIAING THF wfAN '.LELE LE:NGIH AT THE TIME POINT
C romsictrrb.
C romsictrrb.
C
C
    XNG:M=1.-PO?
    XNG:M=1.-PO?
    1s(; 14 1=1,11]
    1s(; 14 1=1,11]
    /(1)=v.0
    /(1)=v.0
    |C 15 J=1.L`
    |C 15 J=1.L`
    Hए(I,J)=Y(],0)+H(~)**(1)
    Hए(I,J)=Y(],0)+H(~)**(1)
    <(I) = (I) +LL(I .J)
    <(I) = (I) +LL(I .J)
    lb C(NTINML
```

 lb C(NTINML
    ```


```

 (1) =/(1)+cic.
    ```
    (1) =/(1)+cic.
    XNII=XMP:+1.-2(1)
```

 XNII=XMP:+1.-2(1)
    ```


```

 Z(1)=<(1)+7(1-1)
    ```
    Z(1)=<(1)+7(1-1)
    xmfu=x(At+1.-l(I)
    xmfu=x(At+1.-l(I)
    IH CON:TINLIF
```

 IH CON:TINLIF
    ```

```

 XN=N
 |I=aMOI`(XA •XNF)
 IF(U1.LT.r.L) KTE=T4=1
 IF(Ul.r.T.i:.9) <TF!T4=C
 1F(nTtET4.c(&.1) ricto %01u
    ```

```

 ZuUQ CONTINOF
 C
C THIS FOHTION OF THE PmOGFAM COHFUTES IHE CISTHIBUTIUN UF
C THE VIHIUAL GAITIAGIINF AT TINF N. THF ALGOKITHM IS AN
C ANALGGUE OF HIORNEHFS METHCL; FC:Z THE EVALUATIGN OF OKUI-
C NAFY FOLYNOMIALS, HLT ADAFTEL HERE IO CGNVGLUTION PKOULCTS.
C
IF(KTESTP.FG.U) (こしTC zu0わ
2010 CONTINLH
00 32 J=1.l:Z
WT(J)=PF(1 l,J)
32 CONTINUF
CC 3.3 J=Lここ.N1
*T (J)=0.%
33 CONTINHF
MN1=1
MN3=?
MN4=LZ
DC 34 Jx=1.LJ1
JX1=L1-JX
MNZ=MN4
MN4 = MNNご+L. ?
MN5=MN4+? .
DO 35 J=Z.NN4
Jk=MN5-J
WT (JR)=0.0
HNE=MAXO(1,JH-MAF.)
MNT=MIMO(1, 2, VN-1)
00 35 NU=MNG,MN7
WT(JF)=WT (JK) +R(NL)*WT(JK-N.L)
35 CONTINUF
WT(1)=0.0
DC 37 JJ=1,LC
WT(JJ)=WT(JJ)+PF(UXI,uJ)
37 CONTINUF
34 CCNTINVUE
WT(1)=FO0+wT(1)
ZMN=2.-PGO-WT(1)
UO 36 J=2.M1
wT(u)=NT(J)+nT(v-1)
ZMN=2MN+1.-\MT(J)
36 CONTINUE
2006 CONT INUF
C
C the wRItE Statements fof Ihe ffguifed outfut.
C
2009 WFITE(3,1016)N,XMN
WRITE(3,1!12)

```
```

* O

```
        wh1Ti(3.101E)N
```

 wh1Ti(3.101E)N
 WH1TE(3.1012)
 WH1TE(3.1012)
 DC 4000 I=1.L1
 DC 4000 I=1.L1
 IF(<(I).LF.0.SGGGy) GC TO 4GOO
 IF(<(I).LF.0.SGGGy) GC TO 4GOO
 LlH=I +l
 LlH=I +l
 GO TO 4010
 GO TO 4010
 4000 CONTINUE
4000 CONTINUE
4010 CONTINUE
4010 CONTINUE
wRIIE(?.1\cap11)N1,FUO,(1,2(I),I=1,L|P)
wRIIE(?.1\cap11)N1,FUO,(1,2(I),I=1,L|P)
WFITE(3.1012)
WFITE(3.1012)
IF(KTESTZ.FC.0.ANL.\&KIESY4.FG.0) GOTO Ér07
IF(KTESTZ.FC.0.ANL.\&KIESY4.FG.0) GOTO Ér07
WKITE(2.10゙Cl)A.2MN
WKITE(2.10゙Cl)A.2MN
virlte(?.1r.lこ)
virlte(?.1r.lこ)
TO 4100 1=1.N1
TO 4100 1=1.N1
IF(wT(I).l.f.0U.SGĢ\varphi) COTO 4100
IF(wT(I).l.f.0U.SGĢ\varphi) COTO 4100
MJF=1+1
MJF=1+1
GO 10 4110
GO 10 4110
4IUU CCNIINUE
4IUU CCNIINUE
4110 CONTINIIE
4110 CONTINIIE
WRITE(3,1\cap20)N•N1,POU,(J.मT(J),J=1,MIP)
WRITE(3,1\cap20)N•N1,POU,(J.मT(J),J=1,MIP)
EOUT CONTINUF
EOUT CONTINUF
IF(KTEST1.EG.O) GCTO COO4
IF(KTEST1.EG.O) GCTO COO4
WRITE(3,1\cap12)
WRITE(3,1\cap12)
WHITE(3.1019)N
WHITE(3.1019)N
WRITE(3,1015)F00
WRITE(3,1015)F00
WRITE(3,1012)
WRITE(3,1012)
DO 17 I=1.Ll
DO 17 I=1.Ll
WFITE(3,1\cap(5)I,(FL(I,v),J=1,L2)
WFITE(3,1\cap(5)I,(FL(I,v),J=1,L2)
17 CONTINUE
17 CONTINUE
2004 GO 10 200?
2004 GO 10 200?
2005 WHITE(3.9Q\&)
2005 WHITE(3.9Q\&)
WRITE(7.3000)X11
WRITE(7.3000)X11
3000 FCKMAT(/, 1X.7\times11= =.E20.10)
3000 FCKMAT(/, 1X.7\times11= =.E20.10)
HFITE(4.3100)X11
HFITE(4.3100)X11
3100 FOKMAT(/, 1X,FERFOK, X11 = *,EZO.10)
3100 FOKMAT(/, 1X,FERFOK, X11 = *,EZO.10)
C
C
C THF FORMAT STATENENTS.
C THF FORMAT STATENENTS.
C
C
997 FORMAT(II.I2)
997 FORMAT(II.I2)
998 FORMAT(\# ATTENTIONV THERE ARE ERFOFS IN THE INPUTF,
998 FORMAT(\# ATTENTIONV THERE ARE ERFOFS IN THE INPUTF,
\#\#.DATA. PLEASE ChECK. \#)
\#\#.DATA. PLEASE ChECK. \#)
999 FORMAT(II)
999 FORMAT(II)
1000 FORMAT (}=1\not=
1000 FORMAT (}=1\not=
1001 FOKMAT(T3)
1001 FOKMAT(T3)
1002 FORMAT(3F7.5)
1002 FORMAT(3F7.5)
1003 FOFMAT (F7.5)
1003 FOFMAT (F7.5)
1004 FORMAT (I4)
1004 FORMAT (I4)
1005 FOPMMAT (3X.13,10F7.4,(EX,10F7.4))
1005 FOPMMAT (3X.13,10F7.4,(EX,10F7.4))
1006 FORTAA; (//)

```
    1006 FORTAA; (//)
```

```
1007 FGRMAT(# THE DFNSITY OF THE NLNBER OF ARRIVALS PER#,
    ## UNIT OF TIMEF,//(EX,10(I4,F8.ड)))
1008 FORMAII# THE INITIAL QUELE LENCTH IS #,I3,/# THE#,
    ## INIIIAL RESIOLAL SEFVICE TIME IS #;I3)
1009 FORMATIF THE NUMRER OF TIMF POINTS COMPUTED IS#,
    #14)
1010 FORMAT(F THE CENSITY CF IFF SEFVICE TIMESFg//2X,
    *(10(14,FB.5)))
1011 FORMAT(3X,10(14,FE.5))
1012 FORMAT(/)
1013 FORMAT (2X. FTHE MEAN NF, OF ARRIVALS PER UNIT-TIMEV##,
    #F10.4./\not= THE MEAN SERVICE TIMEVF,F10.4)
1014 FORMAT( }\ddaggerl\not=|////\not=1HE IRANSIENT EEHAVIOR OF A #,
        #FDISCPFTE TINE GUEUE UITH A FINITE WAITINGROOM#,
        #//1
1015 FCRMATIF THE GUEUE IS FNPTY WITF PROBARILITY\not=,
    *F9.5)
1016 FORMATIF AT TIME N = F,I4,# IHE NEAN QUFUE LENGTHF,
    ## EGUALS#.F1C.4)
1017 FORMATIF THE GUEUE CHAFACTFFISTICS AI TIME N=\not=,
    #I4)
1018 FORMATIX THE CISTMIGLTICN OF THE QUEUE LENGTH # .
    ##&T TIMFA= =*I4/)
1019 FCRMAT(# THE JOINT DENSITY CF THE &UEUF LENGTH \not=,
    ##ANC THE cESICUAL SERVICE TIME AT TIME N=#,I4/\
1020 FOHMATI* THE CISTHIGUTION NF THE WAITINGTIME AT }\not=O
    * FINE N: = *,14,//(3x.10([4.F8.E)))
10己l FCHMATI# THE NEAN WAITINGTJNE AT TIME N =F,14,
    *# IS#,F1C゙.4)
1022 FORMATIF THE LPFFF LINIT OF THE NUMBER OF ARRIVALSF,
    * # PER UNIT OF TINE ISF.13.1* THE UPPER LIMIT OF THE#g,
    ## NUMEER OF LNITS OF SEFVICE-TINE FER CUSTOMER IS#,
    #I3,/# THE UPFER LIMII }10\mathrm{ THE NLMBER UF CUSTOMERS#,
    ## IN, THE CYSTEM ISF,14/)
        END
```


A． 2 CHISQ．F4－PREPROCESSING PROGRAM

C1．REAC IN THE SANPLE CF AFRIVALS PER UNIT TIME．
C2．SORT THE SAMPLE RY NUMBEK OF ARRIVALS．
C3．CHECK IF THE SAMPLE IS A POISSON FROCESS．
DIMENSION A1（101），P1（101），IF（10）
C．$A 1(I)=$ NUMEBER OF OCCUMANCES OF I－I AREIVALS PER UNIT TIME．
C．N＝TOTAL SAMPLE FCIATE．
KEAD（20．100）N
SUM $=0$ 。
SUMZ $=0$ ．
JMAX $=0$
SMALL＝0．0？＊N
DO $500 \quad \mathrm{I}=1,101$
SOO $\quad \mathrm{A} 1(\mathrm{I})=\mathrm{O}$ ．
DO $1000 \mathrm{I}=1, \mathrm{~N}$
FEAD（20．100）1a
IF（IA．NF．O）GC TO 4000
Al（1）＝A1（1）＋1
GC TO 1000
4000 COMTINUE
$005000 \mathrm{~J}=1,100$
IF（IA．GT．J）GC TC 5000
$A 1(J+1)=A 1(J+1)+1$
SUM $=$ SUM + I A
SUMC̈ $=$ SUM？$+I A$ \＃IA
IF（J．GT．JNAX）JM $\Delta x=J$
GO TC loon
5000 CONTIMUF．
2000 CONFINUF
FME $\triangle N=S U M / N$
$V A B=$ SUPAて／R－FNEAN $3+F M E A N$
FATITJ＝VAF／FMEAN
TYPE 3nO•FNEAN，VAK，FATIC

C．VEFIFY IF THF SANPLF IS FOISSON
$J M I N=1$
FACI＝1．
$E X H A=E X P(-F N E A N)$
FMEAMVI＝1．
P）（1）$=F \times P \Delta H N$
E 100 CONIINIF
IO HOOCI I＝JNIN．JMaX
FACI＝FACT＊I
FMEANI＝FMFANI\＃FNEAN
$H=E X F A$ WFMFANI／FACI
6000 P1（I＋1）＝4引N

$J M J N=J M \Delta X+1$
J JM $A X=\operatorname{JMAX}+1$
（i）TU flug
riono contilvile
DCF $=J M A X$
HIL＝P」（1）
AlL＝A1（1）

```
    H1H=ド(JNCx)
    AlH=al(JN:A)
```



```
    If(rll.f.t.gNALL)rCO TC E3IO
    F1L=H11+F1(I)
    A1L=AlL+A1(I)
    IL=1
    LCト=0)(%F-
G310 CONT1N.UF
```



```
    トlH=F!ん+トl(JN&x-I)
    A|F=A)H+A)(JNAX-1)
    IH=J川AX-1
    UOF = COF-1
6320 IF(FIL.GF.SNHLL.ANL.OFIT.JF.SMALLIG:G IO 6400
6300 CONIIAUE
E400 CUNTINUF
    DOF = DCF-1
    ILI= LL+I
    IHI=1H-1
```



```
    LO 6hO! J=1Ll.J!-1
    CFIc=CHIC+(A1(1)-rl(1))*れたノF1(I)
*500 CCMIINIIF
```



```
    SO TO पçsa
SGGG lyHE 7?O
GGG% CONIINIJE
    TYiHt 4an
    DC y000 I=1,uN:3x.1i)
    CO H01(! J=l,1(1
4010 1P(J)=(T-1)+v-1
    TYPt 500:(IF(J),J=1,10)
    TYHE 6OO,(P)(IP(J)+1),J=1,10)
EOO0 iYFF 600.(AI(IF(J)+1).J=1,l心)
JUO FCFNAT(IE)
300 FORMATI/.1X,FFNEAN,VAF,V/N = F,jF10.3)
400 FGN゙NAI(/,1X,7CF1 =O,LCF = %,ÖF10.4)
450 FOFMAT(//.JX,#= AKVLS/EXPTr FFEG/CHSVD FPEQ TARLE V#,/)
S00 FCRMAT(/, 1x,10(1x,15))
600 FORHAT(1X.10(1X,F5.1))
700 FOFMAT(//,]X,FTFE SAMFLE (AN NCT PE POYSSON ;#)
    END
```

```
A.3 KOLMOG.F4 POSTPROCESSING PROGRAM
```

```
C THIS FBCGEGM WAS LEVELOFEC FY LI SHIN YUAN, TRANSPOFTATION
C SYSTFINC CFNTEE. DUT, CAMGFILGE, MASS.. MAY 197G.
C1. THIS FHCGOAN CONPAOFES THE COSEFVEC WAITING TIME OISTRIBUTION
Cl. WITH thE rIfeleing mOUEL GEnERATED WAItING tIME CISTFIBUTION USINE
C1. KOLMOGCFOFF TEGT.
        CIMENSIOA OEFFG(GUO).GFRR(COU)
        DO 1000 1=1, 己OC
        GIFFKG(1)=0.
        GFK'(1)=?.
        CONTINUF
    4000 FCKMAT(Fb.U)
    C. infutS FRON GLELEING mCUEL:
        TYPE Gg.NO
EGOO FOLMATI/,IX,ANLMEEF GF CLASSES HY CIJEUEING MOUEL = *:/.4X)
        ACCEFT 4100.NO
        wolTE111.41001AO
        TYFERHJUR
```



```
        ACCRFT 4.OJg,(OFKG(I),I=1,NGG)
        WFITE (11,4टरlO)(OFRC(1),1=1,NG)
            Furimat(F7.L)
4200 FOKMAT(13)
4100 FOKMAT(TS)
C. FACTOri=ruFGIFING UNII TINE/OECEGVEC UNIT TImE.
            TYFËGAn!
            FOHMAT(/,]X.#FACTCR = *./.4X)
        ACCEFT 4NDUPFACTCP
        WPITE(11.40C0)FFCTON
        FACTOP=1./FACTCK
C. INFUTS FFOOM OESFFFVED CATA:
        J=1
        SFKEij=0.
        TYFE G30:
E3OO FOKMAT(/,IX.FTYFF IN OHS VALLE F FREO I PAIR AT A TIME F./.4X)
2000 cCivIInuF
    ACCEHT 4%C゙COCISSVFFLEC
    WHITE(12,4ECO)CPSV,FFEG
        FUHMAT(PF5.0)
        IF(CHSV.LT.-0.01)OHFF(J(J)=SFFEG
        IF(OHSV.LT.-G.01)GC 10 2110
        IOHSV=ORCV*FACTOH+1.5
        IF(IOESV.GT.u)GO TC ź100
        SFREGOCFDEQOFGEO
        EOTO 2ONO
            OGFin(J)=SFREG
        J=IOHSV
        SFREO=SFFEG+FREG
        GO TO 2000
        CONTINUF
        N=SFRE.O
        SFKEU=1./SFFEO
        CO PरिO T=1,IOFSV
        OUFKG(I)=OUFFG(I)#5FREG
```

```
E200 CONTINUF
C. GET MAX ABS DEVIATE FOF TEST :
        DMAX=0.
        DO 2300 I=2.IOESV
        IF(OBFRQ(I),LE.0.000001)GO TO 2300
        JF(QFRO(I),LE.0.000001)QFRG(I)=1.
        DEV=ABS(CGFFG(I)-OFRG(I))
        IF(DEV.GT.DNAX)DNAX=CEEV
2300
        CONTINUF
        FN=N
        SOKTN=SNFT(FN)
        TYPE SOON.N,SOFTN.DMAX
S000 . FORMAT(N,IX,ZN.SOHIN,DMAX = F&I4,F10.5,F9.5)
    TYPE 5100
S100 FORMAT (/, IX,#OHSERVEC : f)
    TYFE SZ00,(CEFRO(I),I=1, IOESV)
らご00 FORMAT(5FG,E./)
    TYPE 530N
5300 FORMAT(/,1X,*CONPLTED: 土)
    IF(IORSV.GT.NO)NG=IOESV
    TYFE 5?00,(GFRG(I),1=1,NG)
    ENC:
```


[^0]: *For details, sce M.l. Nuets, "The Single Server Queue in Discrete Time-Numerical Analysis, $I, "$ Naval Research Logistics Quarterly, 20 (1973), 297-304.

[^1]: *K.V. Bury, Statistical Models in Applied Science, John Wiley and Sons, New York, 1975.

[^2]: TSee, for example, E.L. Crow, F.A. Davis, and M.W. Maxfield, Statistics Manual, Dover Publications, New York, 1955.
 \dagger Bury, Statistics Models, op. cit.

[^3]: 3.3.3.2 Test Results - For better resolution, as before, the arrival rate was converted from numbers of arrivals per minute into number of arrivals per 10 seconds. The service time distribution was deduced from the observed cumulative distribution plot (Figure 7). The mean waiting time predicted by the $G / G / 1$ model at Braniff gate was 33.85 seconds, which is significantly lower than the observed mean waiting time at the gate (68.96 seconds). However, it is emphasized that the field observed data were not observed at Braniff gate alone. They were accumulated for all gates in service during the observation period. Since the Braniff gate was relatively lightly used and the service time was generally lower than the rest of the gates. The predicted lower waiting time at Braniff gate was consistent. Because of the lack of field data, the statistical tests were not done. However, the observed for all gates) and the computed (for Braniff gate) results are summarized in Table 6.

