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PREFACE

This study was undertaken as part of Project Plan Agreement
FA-632. One objective of this program is the development and test-
ing of techniques to evaluate airport landside congestion param-
eters such as delay. This analysis provides a method of determin-
ing delays arising from queuing. Results contained in this report
should be considered as preliminary and indicative of further
development, especially where multi-server landside facilities
require analysis.

The authors would like to express their appreciation to the
Program Manager, Mr. Mark Gorstein, for his support and con-
"structive criticsm.
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EXECUTIVE SUMMARY

An analytical queuing model was examined for accuracy in
predicting one of the major measures of airport congestion, ﬁamely,
the waiting time at a landside facility. The particular model
chosen is applicable to a single channel server whose arrival and
service time processes have general distributions. This model was
selected because

a. Arrival time distributions obtained from measurements were
tested and found to be non-Poisson.

b. A potentially wide range of applicability was desired
because of the many service facilities present at the landside.

¢. This model was available as a computer program which
furnished waiting time and queue length distributions directly.

In order to investigate the feasibility of using this queuing
model as a tool for evaluating landside congestion, statistical
comparisons were performed to determine whether there is any
correspbhdence between observed field data and model predictions.
Using observed passenger arrival rates and service time distribu-
tions obtained at Denver-Stapleton Airport as the inputs, the model
validation was done by comparing predicted waiting times at the
security station, express check-in, and one boarding gate. Using
the t-test, agreement was obtained at the 5 percent level of sig-
nificance for the mean values of the first two facilities. More
comprehensive data collection is required to validate the probabil-
ity distributions of the waiting time and queue length.

This single channel queuing model may be viewed as the first
step in evaluating landside congestion using an analytical approach.
Further developments in this area would include multi-channel facil-
ity modeling and the linking of various facilities to formulate a
congestion model for the complete landside.

vii/viii



1, INTRODUCTION

Some of the Denver-Stapleton International Airport passenger
data which were collected for simulation model validation were
used to determine the validity of an analytic model. This was
done by comparing the analytically computed queue length and wait-
. ing time distributions with the actual observed queue length and
waiting time distributions in the field. It was hoped that this
validation work would lead to the determination of the feasibility
of using analytic models for estimating the level-of-service of the
landside facility.

The input data for the analytic model are the actual arrival
rates and the actual service time as observed in Stapleton Inter-
national Airport in Denver. The outputs of the model are the queue
length and waiting time distributions computed for each facility
under study. The waiting time output was compared with its field
observed counterpart for model validation. It is believed that
this quantity is one of the most meaningful indicators of the level
of service.



2. THE QUEUING MODEL

2,1 MODEL SELECTION

There are six basic characteristics which can be used to
specify a queuing model:

1. Arrival Pattern: The arrival pattern of the "customers"
could be deterministic (D) or described parametrically as a Poisson
Distribution (or exponential arrival time) (M) or general (G). .
For many airport landside facilities the arrival pattern is most
likely general (G).

2. Service Pattern: The service time pattern of each server
channel could also be deterministic (D), exponential (M), or
general (G). In the airport landside situation it is most likely
general (G). ' '

3. Number of Service Channels: The queuing process may take
place at a facility with a single channel or a number of parallel
channels. In the airport landside both the single and parallel
channel cases are applicable.

4. System Capacity: Facilities may accommodate a limited
queue size or the maximum queue size may be unbounded. Since it
is most likely that no airport landside customers will be turned
back, the maximum possible queue length may be considered infinite
for most queuing situations of interest.

5. Number of Service Stages (in series per each channel):
Each channel may have a single stage or multiple stages connected
in series. Both single stage and multi-stage processes are
manifested by the airport landside.

6. Queue Discipline: Queue discipline can be - classified into
(a) first-come-first-served (FCFS), alias first-in-first-out
(FIFO); (b) service in random (SIRO); (c¢) last-come-first-served
(LCFS); (d) priority (PRI); and (e) general discipline (GD). The
airport landside system operates mostly on a first-come-first-
served (FCFS or FIFO) basis, with some priority (PRI) treatments.



Based on the six basic characteristics, the most desirable
model for the airport landside system would be a model with
(1) general arrival pattern, (2) general service time pattern,
(3) multiple channels, (4) infinite or finite maximum queue length,
(5) single or multiple stages, per channel, and (6) first-come-

first-served and/or priority service discipline. In queuing theory
notation this most desirable model is represented as:

G/G/Ni/(ﬁz)/(ggis) with multiple-stage per channel

It should be realized that the so called most desirable model is
probably the most complicated model one would ever attempt to
utilize.

The development of analytic queuing models appear to have been
influenced strongly by two factors: the origins of models in the
study of congestion in telephone systems and the question of what is
easy and possible in mathematical analysis. Therefore, many assump-
tions commonly made in queuing analyses are precisely those which
seem reasonable in constructing queuing models associated with tele-
phone systems and those which make the models mathematically solvable.
As a result, analytic models which deal with multiple channels or
servers are generally restricted to Poisson arrivals and exponential
service times (i.e., M/M/N). Models which deal with general
arrivals and general service times are presently limited to single
channel (G/G/1) cases.

.The simplifying assumptions used in M/M/N model development
are not always applicable to queues other than those encountered in
telephone systems; they are particularly inappropriate when the
customers and scrvers are really people as in the airport landside.
In a telephone system the process of switching channels or jockey-
ing is carried out automatically and rapidly, whereas in many multi-
counter operations there are no easily defined rules, and people
move with inertia. This was observed visually at Denver-Stapleton
International Airport where queues were formed at ticket counters
at the same time that servers were observed idle. This point was
further verified numerically by the field data. Out of five sets



of arrival data tested, only one set was Poisson, and none of the
service times observed were exponcntial. This was the main reason
why G/G/1 model was selected over M/M/N for validation. Although
this single channel model can represent only a limited number of
facilities in the airport landside, it was chosen to determine
whether there is any resemblance between observed field data and
the model predictions. In addition, a multiple-channel G/G/N
model is currently under investigation.

2.2 NEUTS G/G/1 MODEL

~ A readily available G/G/1 queuing model was chosen for model
validation. This model, developed by Professor Marcel F. Neuts
of Purdue University, accepts general arrivals and general service
times and computes the time dependency features of a single server
discrete time queue with a finite queue length. The model was
coded in Fortran IV and it resides on the DEC-10 computer s?stem
at Transportation Systems Center/U.S. Department of Transportation
(TSC), Cambridge, Mass. The program listing is included in the
appendix.

In the model, the numbers of arrivals during successive unit
time intervals are independent, identically distributed random
variables. These are expressed as the probability of a number of
customers joining the queue during a specified unit time. The
service times of successive customers are also independent and
identically distributed random variables with a givén probability
density. The queue discipline is FCFS. '

For any given time, n, the queue length is denoted as Xﬁ and
the residual service time (i.e., the number of additional units of
service time required by the customer in service) is denoted by
Y . The joint probability density function of queue length Xn and

n
residual service time Yn is denoted as Pn(i,j), where

P (i,i) = P {xn =i, ¥ = j} :

Recurrence relations were derived which compute Pn+1(i’j) from
Pn(i,j) under all possible conditions of i and j. This joint



probability densify function is used to compute the distributions
of queue length and waiting time. These are the basic outputs of
the model.* As stated before, the model has been translated into
a Fortran IV program. The inputs to the program are:

a. The size of the waiting room L1. In the program, L1 is
limited to 100 customers in the system.

b. The maximum number, K, of arrivals per unit time. In the
program, K is limited to be less than L1 arrivals.

c. . The probability, P(J), that J customers join the queue
per unit time, where J = 1,2, ... K.

d. The maximum service time, L2, in terms of time units. In
the program, L2 is limited to be less than 31 time units.

e. The probability, R(J), that a service time lasts for J
units of time, where J =1, 2, ... L2.

f. The probability, PO, that no customers arrive during a unit
"of time.

g. The initial queue length, IO, and the initial residual
service time, JO.

h. The program control parameters, including the number of
time units to be run and the output option selection parameters.

The full output of this program includes the following:
a. The mean queue length as a function of time.
b. The distribution of queue length as a function of time.
c. The mean waiting time as a function of time.
d. The distribution of waiting time as a function of time.

e. The joint density of the queue length and the residual
service time as a function of time. ’

For details, sce M.J. Nuets, '"The Single Server Queue in Discrete
Time-Numerical Analysis, I," Naval Research Logistics Quarterly,
20 (1973), 297-304,




Any one or the combination of the above output items can be printed
out according to the user-selected options.

te

]

2.3 SUPPORTING PROGRAMS

In addition to the queuing model itself, two supporting pro-
grams were written. One of them is used to process the raw data
for queuing model input. The other program is used to compare the
model-predicted waiting time distribution with the field-observed
waiting time distribution.

2.3.1 Preprocessing Program CHISQ.F4

This program was written for preprocessing the raw arrival
data which were gathered in Stapleton Airport. The functions of
this program are:

a. Convert observed arrivals into an arrival dlstrlbutlon
(histogram).

b. Determine the sample mean and variance of the data.

2

c. Perform X"-test (chi square test) on raw data to determine

whether the arrivals are from a Poisson process.

d. Convert the arrival distribution into compatible units for
the G/G/1 model.

This program was necessary because the raw data were not directly
applicable to the G/G/1 model. The test of Poisson was incorpor-
ated in this program, because if the majority of the arrivals were
Poisson and the service times were exponential the applicability
of the analytic approach would be greatly broadened by using

M/M/N models. This program was written in Fortran IV language and
resides on the DEC-10 computer system of TSC under the file name

CHISQ.F4. The program listing is included in the appendix.

2.3.2 Postprocessing Program KOLMOG.F4

This program was written to compare the model-predicted waiting
time distribution with the field-observed data. The computed and
the observed waiting time distributions are the inputs to this



program. The Kolmogroff statistic* is computed from the input
data. Based on this statistic a decision is made whether to accept
or reject the hypothesis that the predicted waiting time distribu-
tion can be used to represent the field observed waiting time dis-
tfibutions. The outcome of this test determines whether or not the
queuing model can be used to represent airport landside facilities.

- As before, the program was written in Fortran IV and resides
on the DEC-10 computer system at TSC under the name of KOLMOG.F4.
The program listing is also included in the appendix.

K V. Bury, Statistical Models in Applied Sc1ence, John Wiley and
Sons, New York, 1975,




3. MODEL VALIDATION

3.1 DEFICIENCIES IN THE FIELD-OBSERVED DATA

Data deficiencies are discussed here for two reasons. First,
because of these imperfect data a judgement of the validation
results should be qualified accordingly. Second, if more data are
to be obtained for further analytic model validation, thosé
deficiencies are the pitfalls to be avoided. It may be noted that
the field data were not taken -specifically for the purpose of
analytic model validation but rather for a simulation validation.
This would probably acceunt for some of the reasons for a deficient
data set. The major problems of the data, in addition to the ex-
pected nonstationarity, are listed as follows:

a. The majority of arrival data was recorded as number of
arrivals per 5 minutes. That means that inter-arrival times can
be erroneous by as much as 5 minutes. However, because the service
times are on the order of seconds, there is an incompatibility in
the accuracy of the two sets of data. A S-minute inaccuracy in
data is too coarse to draw definitive conclusions.

Waiting times were grouped in S-second intervals to form
distributions. Again, compared to the expected service time this
is also too coarse for detailed validation. It is suggested that
the arrival times and the waiting times for each customer should
‘be recorded and aggregated in‘1~second intervals.

b. A variable number of service channels were used during
the data-taking period. The number of servers changes as the
demand slackened or increased. ‘

c. The data are incomplete. For all the facilities, the
queue length data are missing.

d. Observed data were arbitrarily sampled. This may or may
not give a reasonable representation of the population on which
the data were taken.

v



In spite of these deficiencies, three facilities were selected
for model validation. They are the UAL express check-in, the
security check, and the Branniff gate.

3.2 TEST PROCEDURE

The field observed arrival data and the service time data were
preprocessed to conform with the input requirements of the G/G/1
model. Based on the preprocessed data the waiting time distribu-
tion and the queue lehgth distribution are computed by the model.
The predicted waiting time distributions and their expected values
are'compared with the field-observed counterparts. The comparison
of the mean is done by the t-test and the Kolmogroff test is used
for the distribution.

3.2.1 T-Test for Means

The mean value of the predicted waiting time is compared with
the observed mean waiting time using the t-test. The null hypoth-
esis for this test is that the population mean of the observed
waiting times is equal to the predicted value on the basis of a
random sample. The t-statistic is defined as:

X - a
s/vn

t =

where
X = sample mean
a = predicted value of mean
s = standard deviation of sample
n = number of sample points

The absolute value of the t;statistic is compared with a critical
value ta/z, n-1 for a given significance level a. The null
hypothesis will not be rejected (i.e., it will be accepted that the
mean waiting time equals a) if the absolute value of t-statistic

is less than tOt/2 The numerical values of this critical
H

n-1°



statistic may be found from standard statistical tables.* The

significance level a is usually set at 0.05.

3.2.2 Kolmogroff Test for Distributions

For a given sample x of size n, such that

a cumulative distribution function, Gn(x), is defined by the
following:

Gn(x) 0, x < xq

1}
g
~
=
~

If the sample x comes from the completely specified postulate,

F(x), then
n-roo

lim p, {Gn(x) - F(x) = 0}»=,1, for all x.

Based on this fact, a test of fit for F(x) is constructed by
defining the Kolmogroff statistic,

D, = sup lGnCXJ - F(X)l

If the value D, is larger than a critical value (as a function of

n) (d ),

n’c
postulate F(x) will be rejected. For significance level a =
the critical value is+

e
See, for example, E.L. Crow, F.A. Davis, and M.W. Maxfield,
Statistics Manual, Dover Publications, New York, 1955.

Bury, Statistics Models, op. cit.

1-

10

the null hypothesis that the sample x comes from the

0.05

fa



1.36
(d ). = =2, for a = 0.05.
n’c Jn ?

The observed waiting time distributions are tested by the
~Kolmogroff test.

3.3 FACILITIES TESTED

3.3.1 Security Check

3.3.1.1 Observed Data - Data were taken on January 23, 1976,
between 1500 and 2000 hours. The arrivals at this station were
aggregated over S5-minute intervals, which resulted in 59 data
‘points. From these, the histogram shown as Figure 1 was produced.
A chi-square test of the data showed no agreement with a Poisson
process, and thus the G/G/1 model was applied. Two channels were
generally in service; however, at infrequent intervals only one
channel was operating. The service time per channel was operating.
The service time per channel was assumed to be a constant 8

seconds per customer. Waiting times were recorded for 726 arrivals
sampled from a total of 3,511 actual patrons. The frequency dis-
tribution of waiting times is shown in Table 1.

3.3.1.2 Test Results - In order to get better resolutions, the
arrival rate was converted from the number of arrivals per 5
minutes to number of arrivals per 4 seconds. This is done by
dividing the observed number of arrivals (per 5 minutes) by 75.
It is true that the resulting arrivals may not represent the actual
arrivals if better resolution were used when the data were taken.
‘However, this is probably the best that can be done with the exist-
ing data.

In the majority of times, two channels were in operation,
each with a constant 8 seconds service time (estimated). The
service time used in the analytic model was assumed to be 4 seconds
for 97 perccent of time, 12 seconds for 2 percent, and 20 seconds for
1 percent of time. It is believed that this service time distribu-
tion uscd in the analytic model validation is more realistic than
the estimated constant service time.

11
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FIGURE 1. OBSERVED ARRIVALS AT SECURITY CHECK
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TABLE 1. OBSERVED WAITING TIME (IN SECONDS) AT SECURITY CHECK,
FRIDAY, JANUARY 23, 1976, 1500-2000 HOURS '

EQUENCY OISTRIBUTION

F R
1t21ala|s|e |78 |9fr0]r1f{2]13|16]|15]|16 (17 {18 |19 |20
1- 20 o1 0] 0] 0lo|o|o]o]o]| 3] 2| s| 5| 2] 3| 7] a]10]5]13
21= 40 1110|665 }|e|las|6]aa)2]|e6| 3] 73] 3] 7| 3|S5|2]2]|¢4
4= 60 3le |32 |3y |stafr{3]2]a]e}lr}2)1]3]112}1
61- HD 1y lTofo Y)Y o W o2l 1171 el vl ol v [0 o[eT 1} o
R1=100 ololololo|loleto]le|lo) ol ol o] 2} 1] 1] 0] 0f 0}
101-120 el lr]lzl1)lojeli]olefl ] o] 1] 0] 0f 0] 0] 0fc0].o0
121-140 elololololojo|lole]olo]l e[ 0o o] o0 o[t 70| 0]
141~160 ololololo|]ol1|lo]ojofc] ofjof oo | oO0]oc]o}]o
161-182 olol1]lolo|o]lolo|o|]ojo]l oJo] o] ofjo] o]oO]o]eoO

No. of values = 726 (sampled from 3511 passengers)
No. of zeros = 505

Mean = 11.63 seconds

STD. Dev. = 23.05 seconds

Minimum = 0, Maximum = 163 seconds

69.5% waited less than 10 seconds

99% waited less than 105 seconds



The comparison of mean and distribution are done separately
as follows:

a. Test for Mean Wating Time: The observed 11.63 seconds"
mean waiting time at security check is compared with the model-
predicted mean waiting time of 10.41 seconds by the t-test. The
t-statistic is computed as

£ = X -_a
s/vn
_ 11.63 - 10.41
23.05/ V726
= 1.425.

The critical value is

ta/2,n-1 = to.025,725 = 1-960

Since t is less than ta/z n-1» there is no reason to reject the
?

hypothesis that the G/G/1 model can be used to predict the mean

waiting time for the security check tested.

b. Test for Distribution: The observed and the computed
waiting time distributions are compared by Kolmogroff test. .The

Kolmogroff statistic is computed by the program KOLMOG.F4 as
follows:

D, = 0.08099, with n = 726

The critical value 1is

@) = 136

n-c /n v

—

3
2

@)

~
(=)}

0.055, for ¢ = 0.05.

Since Dn is greater than (dn)c, it is concluded that the G/G/1
model cannot be used to predict the waiting time distribution at
the security check tested.

14
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The field observed and the computed waiting time distributions
are plotted in Figure 2. It is noticed that for waiting time less
than 10 seconds the field observed curve is flat. This flat por-
tion is the cause of the high value of Kolmogroff statistic D,.
Checking with the observed raw data it is found that there are
many (505 out of 726} who went through security check without any
wait. All of the rest waited 10 seconds or more. However, there
‘were no persons recorded as waiting less than 10 seconds if they
were waiting in line, This most likely indicates that the person
who took the data arbitrarily recorded anything less than 10
seconds as 0 seconds. This casts some doubt on the validity of
this portion of the field data, which therefore was omitted in
comparison. The observed and the computed results are summarized
in Table 2.

3.3.2 UAL Express Check-In

3.3.2.1 Observed Data - Data were taken on January 23, 1976,
between 1500 and 2000 hours. The arrivals were taken in 5-minute
intervals. The histogram of the arrivals is shown in Figure 3.
The arrivals do not agree with a Poisson process.

A total of 58 arrival intervals were observed. The number
of channels in service varied between one and two. The service
time per channel was in cumulative distribution form. (See
Figure 4.) There were 192 arrivals sampled from a total of 337
actual passengers. (See Table 3 for details.)

3.3.2.2 Test Results - As before, the arrival rate waé converted
from number of arrivals per S -minutes to number of arrivals per

10 seconds for better resolution. The service time distribution
was deduced from the observed cumulative distribution plot (Figure
4).

The cffcect of the variable number of channels in operation was
compensated by multiplying the arrival rate by a factor correspond-
ing to thc average number of servers in operation. The comparison
of mean and distribution are done separately as follows:

15



CUMULATIVE PROBABILITY OF WAITING TIME
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FIGURE 2. SECURITY CHECK WAITING TIME DISTRIBUTION
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TABLE 2.

"SECURITY CHECK COMPARISON

OBSERVED FIELD DATA

COMPUTED RESULTS

CONSISTENCY

Mean Waiting Time

11.63 seconds

10.41 seconds -

yes (o = 0.05)

Waiting Time Distribution
std. Dev. = 23.05 sec.
69.5% with zero wait

69.5% waited less than 10
sec.

99¢ waited less than 105
sec.

8.4% waited less than 4 seconds

57.9% waited less than 10 seconds

99% waited less than 48 seconds

(=]
|
~

no (o = 0.

Queue Length =

No Data

mean = 2.35
99% of time queue length
is less than 1l.
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FIGURE 3. OBSERVED ARRIVALS AT UAL EXPRESS CHECK-IN
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FIGURE 4. UAL EXPRESS CHECK-IN SERVICE TIME DISTRIBUTION
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TABLE 3. OBSERVED WAITING TIME (IN SECONDS) AT UAL EXPRESS
CHECK-IN, FRIDAY, JANUARY 23, 1976, 1500-2000 HOURS

FREQUENCY DISTRIBUTION

1=5 | 6-10 |11=15 |16=20 |21-25 |26-30 [31-35 | 36-40 | 41-45 | 46=50 |51-55 |S6e60
T- 60 10 3 11 € 7 L

61-120 3 3 6 6 0 4 H H ] 2 1 2
121-180 s | 2 0 1 3 | 1 0 3 3 0 1 o
161-240 2 1 R I T e S R S B I e e e B S
241~200 0 0 0 0 1 0 0 0 0 1 0 o
01-360 | 0 | o 0 1 0 1 0 0 0 0 0 ’
36]1=4620 0 [+ A I B A R It T A i [ N I Tt Ear' Ny Y S [+ I : —
421~440 9 1 0 0 0 0 0 0 0 0 0 o

No. of values
No. of zeros = 35

Mean = 59.75 seconds

Std. Dev. = 68.15 seconds

Minimum = 0, Maximum = 427 secbnds
18.23% with zero wait

26.6.% waited less than 10 seconds

99% waited less than 330 seconds

192 (sampled from 337 passengers)



a, Test for Mean Waiting Time: The observed 59.75 seconds
mean waiting time at UAL Express check-in is compared with the
model-predicted mean waiting time of 52.68 seconds by the t-test.
The t-statistic is computed as:

t = X8
s/v/n
_ 59.75 - 52.68
68.15/ /192
= 1.437,

The critical value is

ta/2,n-1 = %0.025,101 = 1-960

Since t is less than ta/z n-1» there is no reason to reject that the
?

G/G/1 model can be used to predict the mean waiting time for the

UAL express check-in tested.

b. Test for Distribution: The observed and the computed
waiting time distributions are compared by Kolmogroff test. The

Kolmogroff statistic is computed by the program KOLMOG.F4 as
follows:

Dn = 0.11894, with n = 192

The critical value is

I
-«

1.36 _ 1.36
(d)). = =
n-c /n vi9z

1)

0.098, for a = 0.05

Since D is greater than (dn)C, it is concluded that the G/G/1
model cannot be used to predict the waiting time distribution at
the UAL express check-in tested.

The field observed and the computed waiting time distribu-
tions are plotted in Figure 5, Note that if the waiting times
which are less than 30 seconds are treated the same, the predicted

21
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FIGURE 5. UAL EXPRESS CHECK-IN WAITING TIME DISTRIBUTION
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waiting time distribution is a rather close fit to the observed
waiting times.

The observed and the computed results are summarized in Table
4 for better comprehension.

3.3.3 Braniflf Gate

3.3.3.1 Obscrved Data - Data were taken on January 25, 1976,
between 1000 and 1500 hours. TForty-four arrivals were observed
and recorded to the nearest minute. The histogram pf'these is
shown in Figure 6. A chi-square test showed a lack of agreement
with a Poisson process. The service time per channel is shown
as Figure 7 in cumulative distribution form. In this case, only
one channel was in service. Braniff gate waiting time data were
combined with all other gate waiting times to form a single dis-
tribution shown in Table 5. There were 368 customers sampled
from a total of 1,498, This combined dsitribution was used for

‘comparison with the G/G/1 model.

3.3.3.2 Test Results - For better resolution, as before, the
arrival rate was converted from numbers of arrivals per minute into
number of arrivals per 10 seconds. The service time distribution
was deduced from the observed cumulative distribution plot (Figure
7). The mean waiting time predicted by the G/G/1 model at Braniff
gate was 33.85 seconds, which is significantly lower than the
observed mean waiting time at the gate (68.96 seconds). However,
it is emphasized that the field observed data were not observed at
Braniff gate alone. They were accumulated for all gates in service
during the observation period. Since the Braniff gate was relative-
ly lightly used and the service time was generally lower than the

rest of the gates. The predicted lower waiting time at Braniff

gate was consistent. Because of the lack of field data, the
statistical tests were not done. However, the observed (for all
gates) and the computed (for Braniff gate) results are summarized
in Table 6.

23
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TABLE 4. UAL EXPRESS CHECK-IN COMPARISON

OBSERVED FIELD DATA

COMPUTED RESULTS

CONSISTENCY

Mean Waiting Time

59.75 seconds

50.93 seconds

yes (o = 0.05)

Waiting Time Distribution

Std. Dev. = 68.15 sec.
18.23% with zero wait
26.6% waited less than 10 sec.

99% waited less than 330 sec.

45.1% waited less than 10 sec.

99% waited less than 340 sec.

no (a¢ = 0.05)

Queue Length:

No Data

mean = 1.0
99% of time the gueue length

is less than 5.
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FIGURE 6. OBSERVED ARRIVALS AT BRANIFF GATE
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FIGURE 7.

BRANIFF GATE SERVICE TIME DISTRIBUTIONS
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TABLE 5.

SUNDAY, JANUARY 25, 1976,

FREUQUENCY

”

1000-1500 HOURS

DNISTRIRUTION

OBSERVED WAITING TIME (IN SECONDS) FOR ALL GATES,

1=S 6=10 [11=15 |16=20| 21=-25 |26=30 | 31=35 |36=40 | 41=45 | 46«50 | 51=55 S6=60
1- 60 10 12 22 17 9 17 7 15 7 4 10 )
61-120 6 2 ] 3 2 7 5 5 4 0 2 o -
12'~180 2 1 3| ey v o2 oo 4 2 ] 03 1 o | 1 |
183i-240 1 2 1 0 [ 2 2 2 0 1 1 0
241 -300 “ 3 2 1 0 1 1 0 0 0 1 1
3681-360 o1 1 0 o | 0 n R - o |_ o0 | 0.
364 420 2 0 i 0 U R I 2 0 1 0 1 1
421-480 1 0 1 0 0 1 n 0 0 0 1 ]
431 -540 L 0 0 1 0o 0 0 0 0 0 0 0
541~600 0 0 0 l 1] n | 0 1 | ¢ 1 0 0 0

No. of values = 368 (sampled from 1498 passengers)

No. of zeros = 120

Mean = 68.96 seconds

std. Dev. = 108.79 seconds
Minimum = 0, Maximum = 585 seconds
32.6% with zero wait

38.5% waited less than 10 seconds

99% waited less than 455 seconds
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TABLE 6. BRANIFF GATE COMPARISON

OBSERVED RESULTS (ALL GATES)

Waiting Time:

Mean = 68.96 seconds

Std. Dev. = 108.79 seconds

32.6% with zero wait

38.58% waited less than 10 seconds

99% waited less than 455 seconds

Queue Length:

(No Information)

COMPUTED RESULT (BRANIFF GATE)

Mean = 33.85 seconds

25.1% waited less than 10 seconds

99% waited less than 160 seconds

Mean = 1.95

99% of time the queue length was

less than 9.
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Y4, CONCLUSION

As mentioned before, the field data were not collected
specifically for the analytic model validation and thus were
not ideal for the purpose of this study. Instead of taking the

" number of arrivals per 5 minutes and taking the number of delays

in a time bracket, the data for actual delay in seconds for each
passenger would be more suitable for analytic model validation.

Because of the single channel limitations, there are many
facilities in the'airport landside which may not be represented by
the G/G/1 model (e.g., ticket counter, baggage claims, curb sides).
However, despite the less than desirable field data, for all three
facilities tested the G/G/1 model adequately predicted mean values
of the waiting time. Moreover, the tested facilities include
those  whose numbers of servers were changed to accommodate demand
changes. It seems to suggest that as far as the mean values are
concerned, the G/G/1 model can be used for waiting time predictions.
The predictions of waiting time distributions, howéver, were not
good. The model did not do well enough to pass the Kolmogroff

test, possibly because of the reasons described above.
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APPENDIX
PROGRAM LISTINGS

YNEVTS.F4 - G/G/1 MODEL

THIS PROGRAM wAS CEVELOFEL bY mARCEL Fo NEUTS - DEFART-
MENT OF STATISTICS = FORLLE UNJVERSLITY = wFST LAFAYETTE-
INDIANA,. OCTOPRER 1971,

THIS FROGRAM COMFUTES THE TIME CEPENDENT FFATURES OF A
SINGLE SExVER DISCRETE TIME QUFLE WITH A FINITE WATTINCG-
ROQOM,

WITH ThE. PYESFMNT CIMENSION STATEMENTS A WATTINGROOM OF
SIZE UP TO GNF HUANNREL MAY FE <TUDIED. THE OENSITY OF THE
SERVICE TIME CAN HE CONCENTRATEC ON UP TO THIKRTY POINTS.

THE FULL CUTPLT CF THIS FROGHAM INCLUCES THE FOLLOWINGV

1, TRE MEAM GU-EUE LENCTF AT TIME N.

2. THE GLISTRIBUTICN OF Tre GUFLIE LENGTH AT TIME N.

3, THE ™MEAN wAITINGETINvE AT TIMF Ne '

4, THE LCISTRIFUTICN CF TRE WAITINGTIME AT TIME N

5. THE JGIMT FENSITY LF TFe CUFLE LENGTR AMD THE RESIDUAL
SERVICE TINE AT -TIvk N

ALL THRESE ARPF COMFLTFEL FUR N L TO A SPECIFIELC VALUE NNMN.,

RY LSE GF THE VARIGUS OFFIUNSe LISTED BELOws SOME OF TRESE
FEATURES mAY 2F LELETel FrGM THE wkITTEN CUTFLT.

THE ThREGRETICAL LEVELUPMENT OF ThE LISCRETF TIME QUEUL
WITE AN UNROQUADEL GUELE LEWNGTE MAY EE FOUND TAV

# STELLa C. DAFERMOS BANC VARCE) F, NEULTS
# A SINGLE SERVEF OUELE IN DISCRETE TIME #
# CARIEWS B CFNTFE Ok FECHERCHE CFEKATIONMELLE ='1%71.

THE FOLLOWING TS & COWKANIUN FakEK TO THE BHRESENT PROGKAMY

*

MARCEL F, NFLTS L

THE STWGLE SERVER GLELE IN PTSCRETE TIME = NUMERICAL
ANALYSTS #

# PUKDUE wINMEFGRAFK SerlkS = CFET. CF S1ATISTICS.

# PUKOUE UMTVERSITY = wEST LAFAYETTE = IN = 47907

* %

DIMENSTON (LuD) er (3G oFP(ICUPZU) o X (LUM)aY(100430)
CIMENSTO Z¢LU0Yen (10U) ewT (2000
CINTEGES GRT(10)
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OO AN ANOT

aNaNaNaXeNaNaNal

[aFaNaNaXel

[aNaNaNal [aNaNaNal

OO0

[aReaNaNn)

#RHDE T F O OCE § I C NS usasn

IN CHDER TO WEITE OLT THE JOINT DENSITY OF THE QUEUE LENGTHR
ANG THE RESTDNLAL SERVICE 11MEs SET CPT(1)=) - OTHERWISE
SET OPT(1)=0

REAC (HeQ92) CET(])

IN OKDEK TC WEITE CLT TRE LIST0IHUTION OF THE WAITING=
TIMEs SET OPT(2)=1 = CTRERWISE SET CPT(2)=¢

READ(59G9G6) CFT(?)

THE USEr MAY wISE TC COMPLTE AvC WRITE THE UISTRIBUTION OF
THRE WAITINCTIME CALY AT TIME FAINTS whICH ARE A MULTIPLE OF

A CCNSTANT MR, TFIS TC SAVE ON FWOCESSING TIME AND ON Tt
NUMFER OF LINFS CF CUIPLT. IN THFIS CASE THE IDENTIFIER

OPT(3) ShOLLL HE SET EQUAL 10 NNE ARD THE NUMEER NR SHOULD Et
GIVENGS GP1(3) ANC Nk ARE Tu HBE GIVEN IN AN I1sI1Z FORMAT.

KEAD(5+997) CFT(3) 9Nk
ANR=NK

KTEST1I=0PT (1)
KTEST2=0PT (2)
KTEST3=0PT (3)

1IF (KTEST3,ECel) KIESIZ=0
IFIKTEST3,FGe0) KIEST4=0

#adted T H F [ A ) A #usnasn
L1 IS THE SIZF OF TFE wAITINGRGCMe L1 IS LT. 101

REAL(5=.1001) L1

L2 IS The NUMRER CF PCINTS ON wHICF TRE DENSITY OF THE
SERVICE TIME TS CCNCENTKATED. te 1S LT, 31

READ(S+1001) L2

K IS THE MAXIMUM NUMRER OF ARRTVALS PER UNIT GF TIME.
K ShOULD wF AT LLEAST CNE AND STRICTLY LESS THAN Ll.

READ(S5+1001) K
R(J) 1S THE PROBAEILIVY TFAT & SERVICE TIME LASTS FOR J
UNITS OF TIME,
ONE ShOULD VERLFY BEFCRERAND THAT THE SUM R(1)4seeRI(L2)
IS FEQUAL T0O OANEe.

REAC(5+1002) (R(J)eJ=1eL2)
P(J) IS THE POQORABILITY THAT J CUSTCMERS JOIN ThE QUtUE

DURING A UNIT OF TImF,
THE INDEX J RUNS FKOM ONE TO K,

32

“a

)



a¥aXaEaKaEaKel a¥aRa¥uNaXal

a¥alaXaKakaXal

L)

READ(591002) {(P(J) 9J=119K)

PO IS THE PROFABILITY THA1 NU CLSTCMERS ARRIVE DURING A
UNIT OF TIMF.
ONE SHOULD VEEIFY BRFFGREMAND THAT FO + P(1) +eee?P(K)
IS EQUAL TO ONE.
REAG (541003) FO
10 IS ThE INITIAL NUELE LEWGTH,
J0 IS THE INITTAL KESIDUAL SERVICE TIME.
IF 10=Us THEN J0=0 ANL CONVERSFLY.
10 SHOULD NOT EXCEEC Ll
JO SHOULD NOT EXCEEC L2
READ(S5+1001) 10
REAG(S91001) JO
NNN IS THE MAXIMULM TIME PCINT FCR wrICH THE OUEDE
FEATURES ARE COMFUTED. NNN SHCULD EE AT LEAST ONE AND
AT MOST 9999. NOTE HOwEVER THAT THE PROCESSING TIME
AND THE NUMREF OF LINES CF QUTPLT CROW PROPORTIONATELY 10
THE VALUE OF NNNs
REAC(S91004) ANA
IF(I04EQeNeANDJ0.EGC.0)GOTO 2001
PP(I0sJ0)=1,
GOTO 2no2
2001 POO=1,
2002 N=0
. X11=P0
DO 21 I=1.K
xI=1

X11l=X11+P (1)
Xl= Kl*XI*P(I)
21 CONTINUE

D0 22 J= 19L2

Xo=J

Xll=s Xll*P(J)
X2=X2+XJ%R (J)

22 CONTINUE

X11=X11-2.
X11=ABS(Xx11)
WRITE(3+1014)
WRITE(341022)KsL20L1
‘N1=0
“WRITE(3+1007INYsPOC(UsP(J) gu=19K)
WRITE(3,1012).
WRITE(3+1010) (JeR(J)su=lsl?)
WRITE(3s1012)
WRITE(3+1008)10+J0
WRITE(3.1012)

WRITE (3+41009)NNN
WRITE(3+1012)
WRITE(3+1013)X14XZ
WRITE(3+1006)
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[N el

OO

OO0

OO OO OO

weeas D1 AGCNOSTICG #ruusn

IF(L1.LE.K) GCTC 2005

IF(I0.,EQe0sANC e UONEe0sOReI0«NE«0.ANDeJO.EQ.0)GOTO Z00S

IF(X11.GT,.000001) GOTO 200%
IF (KTEST3.,EQs1.ANCoNR.LT42) GOTC 2005
WRITE(4437200)

3200 FORMAT(/91Xs2THE FROGRAM FAS RUNg#)

Lll=L1=-1
Lel=Lz~-}
L22=L2+]
Ml=L1#L2
Kl=K+l]
00 13 I=1.L1
Y{1sL2)=0,0
13 W(l)=l.=P0
IF(KeEQ.1)GOT0 2003
00 20 T=2.K
W(I)=w(T=-1)=F(I=-1)
20 CONTINUE

AT THIS STAGE THE INPULT CATA FaviE BEEN READ INs THE
PP=ARRAY KHAS PEEN INITIALIZEL AND TFE INPUT DATA HAVE
BEEN WRITTEN CUT ANC SUBJECTEC 10 SCME RUDIMENTARY
DIAGNCOSTIC TESTS. THE NEXT LINF STAKTS THE MAIN LOOP
WHICH IS REPEATEC NAN TIMES.

whtet T HE M A LN L ONP #itétae

2003 N=N+1

IF (NeGTJNMN)Y STCP

THIS PORTION NF 1+HFE PrOChAM COMFUTES THE NFW PP=ARRAY.
PP(1e4) IS THF PRCPARLLITY THAT AT THE T.IME CONSIDERED
THERE AKE 1 CUSTCMFRS IN THE SYSTEVM AND THE RESIDUAL
SERVICE TIME CF THE CUSTOMEF PEING SERVED IS J.

THIS IS FOR I HETWEEMN ONE ANU Lle FCR U BETWEEN ONE AND
L2. TRt IDENTIFIER FOU CONTAINS THE PROEABILITY THAT THE
QUELE IS EMFTY,

WRITE (341000)

ARITE(3«1017)N

WRITE(3e1Nn1Z2)

X00=PU0+PP (1s1)

DO 1 I=1lek

X{1)=P(T)#PO00+PO#FP(1+141)

[1=1~-1

DO 3 NuU=lWT

X(L)=X(T) P (T¢1=NL)#FE(NUGT)
3 COWTINUF
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4 U0 ¢ J=1s21
Y{I+J)=PCRPP (LoJu+1l)
IF(1.EN.1)GO1C S1
DO S NV=1.TI1
Y(IeJd)=Y(TeJd)+P (I-NVIHPP(NyveJ+]l) ~
S CONTINUE
&1 CONTINUE
CONTINUE
CONTINUE
BC 6 I=Kl,L1l4
NUl=T-K
NLZ=NUY+1
11=1-1
X(1)=FO®RE([+141)
DO 7 NU=sNLZ2sT
X(I)=X(1)+P(I+1=NL)HPF (NU9Y)
7 CONTINUF
' DO S u=le2]
Y(IeJ)=PO#PE (Teu+1l)
DC B hv=NE Yol
Y(Lod)=Y(Ta ) +F (T=MVIREFP(AVaJdt])
CONTTINUF
CONTINUF
£ CONTINUE .
X{lr=r,u
DO 10 MU=1eK .
X{LI)=X(LIY+w (MUY RPE(LL+l=rLol)
10 CCiNTINUE
GO 11 J=1leL21 .
Y(Llesud=PE(LleJ+])
NO 1z NS K
YOLLleu) =Y (LY ou )+ (NLYRFEF(LYI~NLes+])
12 CCNTIMNUE
11 CONT It
PUO=PURYGH

—

£Lx

7(1) CONTRAINS FIRST Tre CENSLTY AND WNEXT TwE CISTRIHMUTICN
CF 1rE GUEUF 1 enCTk &) Tre TIVME PCINT CONSTDERED.

XWN CONTALLINS THE MEAN UELE LENGTR AT ThE TIME POINT
CONSTLERF

Xptaz=]1 4 =P0GN
LG o T=)a411
Z(1)=v.a.0
NG 1% J=slel e
RPRP(Ted)=Y(Tal) k()X (])
FASREVERBREITEE IWE
1o CONT Nt
la CORT)ivUE
FESREVARBELNE
AWMz Mt 4] (=2 (1)
LG e 1=
Z{1)=2(1)+7(1=1)
Xz At 4] ,=24(])
14 COMTINUF
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TFEA(RTESTI ENRL0) GLTIC 2UUB

XN=h

Ul=aMUR (XN « XNF)

IF(UlLTer %) KTESTu=]

IF (LT e eB) “TESTas=(

IF(nTESTa ,f04 1) GCTC 720)u

JE(RTECSTu FGet) 6BLTC clGuY
2008 CONTINUF

THIS PORTION AF THE PrOCGRAM COFUTES THE CISTRIBUTION UF
ThE VIRTUAL wAITINGTINME AT TIMF Ne THF ALCORITHM TS AN
ANALGGUE OF HORNERZ2S METHCL FC: TRE EVALUATION OF QkiI-
NAKY FOLYWNOMIALSs RUT ALDAFTEU wewb 10 CGRVOLUTION PrODUCTS,

[aNaNaYaNalal

IF(KTESTZ2,FReu) GUIL zU06
2010 CONTINULE
0G 32 J=l.le
WT(J)=PR (L 1eu)
3¢ COMTINUE
GG 33 J=L72eM1]
wT (J)Y=h,"
33 CONTINUE
MN1=1
MN3=p
MNa=L7
DC 34 Jx=1.L1]1
JX1=L1-uxr
MNZ=Mha
MNy=MNZ +L 7
MNS=MN& +2
DO 35 J=2.MN4
Jk=MNG =
WT(UR)=0eN
MNE=MAXQ () 9y Jh=MAZ)
MN7=MIMNG () 2yur=])
b0 35 Nu=MNeeMN7
WT(UR)ISWT (UR) 4R (ML W T {urR=%NL)
35 CONTINULE
WT(1)=0,0
DC 37 JUJd=1lsle
WT(JUI=WT (JJ) +PE(UXL e )
A7 CONTINUF
34 CCNTIKNUE
WT(1)=FPO0U+»wT (1)
ZMNZZ2 =P 0U0=-T (1)
DC 36 JU=zZ.Mm]
wT(UI=wT (UY+aT(u=1)
ZMN=ZMN+] (=T (U)
36 CONTINUE
2006 CONTINUE

C THE WRITE STATEMENTS FOR 1hHE RFGUIKED OUTFUT,
2009 WRITE(3s1016)NsXMp
WRITE(3.1012)
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WRITE(3«101B)IN
WHITE(2e1n12)
DC 4000 TI=1.L1
IF(Z2(1)4LFa0a565Gy) GC TO 4(00
Lik=1+1
GO 10 4010
4000 CONTINULE
4010 CONTINULE
WRITE(ReINP1LINLeFUQe(19Z(T)el=1oL1P)
wRITE(3e«l012)
IF (K]EST?.EQ.O.ﬁNDoKlES“#o:CcO) G010 2007
WRITE(*al0Z1INOZMN
WwrRITE(RelIR12)
TO 4100 J=1eN]
IF(WT (1) el FeVev5559) COTO 4100
FiF=1+1
GO 10 o11n
413y CCnITINLE
4110 CONTINLE
WRITE(341020)NeN1oPOUs (UoWT(J) 9u=1eMIP)
e007 CONTINUF
IF(KTESTY.EGH0) GCTC <004
WRITE(3e1N12) '
WKITE(3e1G19)N
WRITE(3.1015)F00
WRITE(3s1012)
D0 17 I=1.L1 :
WRITE(3e1N0GS)Is(Pr(les)ed=1eL2)
17 CONTINUE
2004 GO T0 2007
2005 WRITE(349G8)
. WRITE(Qe3000)X11
3000 FCRMAT (/41 Xe2X]1]1 = #4E20e10)
. WHITE(4+43100)X11
3100 FORMAT (/91X 9?2ERROKky X11 = 29E20.10)

C THE FORMAT STATEMENTS,

997 FORMAT(I1.12) :

998 FORMAT (# ATTENTICNY THERE ARE ERRORS IN THE INPUT#2,
## DATA. PLEASE ChrCKe #)

999 FORMATI(I)

1000 FORMAT (#21#)

1001 FORMATI(T3)

1002 FORMAT (3F7.5)

1003 FORMAT(F7,.%)

1004 FORMAT(14)

1005 FORMATI(3X«I30INFTe49(EXe10FT44))

1006 FORMAT (/7))
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1007 FCRMAT(# THE DENSITY OF THE NULMBER OF ARRIVALS PER#,
#2 UNIT OF TIME#9//7(Z2X910(149F845)))

1008 FORMAT(# ThHE INITIAL QUELF LENCGTHF IS #+I3s/¢% THE#,
## INIVTIAL RESICULAL SERVICE TIME IS #,13)

1009 FORMAT (# THE NUMRER OF TIMF POINTS COMPUTED IS#s
#14)

1010 FORMAT(# ThE CENSLITY CF 1kF SERVICE TIMES#29//2X
#(10(14sFB,5)))

1011 FORMAT(3Xs10(144Fu.5))

1012 FORMAT (/)

1013 FORMAT(2Xx«2THE MEAN Nho OF ARRIVALS PER UNIT- =TIMEV#,
#F10.44/% THE MEAN SERVICE TIMEV#9F10.4)

1014 FORMAT(#1#+////# ThE TRANSTENT EERAVIOR OF A #,
##DISCPETE TIME QUEUE WITH A FINITE WAITINGROOM#,
®//) .

1015 FCRMAT (*# THE GUEUE IS EMPTY WITH PROBARILITY#,
#F9,.9)

1016 FORMAT(2 AT TIME N =2414s# THE MEAN QUFUE LENGTh#,
82 ECGUALS#.F1G.4)

1017 FORMAT(# THE QUEUL ChAKACTFRISTICS AT TIME N = #4
#14) :

1018 FORPMAT (2 THE CISTRIBUTICM NF THE QUEUE LENGTH #.
#2AT TIME = 24l4y)

1019 FCRMAT(# THE UOINT BENSITY CF TFE QUEUE LENGTH #»
#ZANC THE FESICUAL SERVICE TIME AT TIME N =#4147)

1020 FORMAT(# THE CISTRIBUTION nf THE WAITINGTIME AT #.,.
BETIME M = 24145//7(3XKe10(J44F845)))

1021 FORMAT(# THE MEAN WAITINGTTIME AT TIME N =#414
#2 [S#EGF1E,4) ‘

1022 FORMAT(z THE LPFFr LINIT OF TRE NUMBER OF ARRIVALS#,
#2 PER UNIT OF TIME IS#e13s/% THE UPPER LIMIT OF THE#s
## NUMEBEER CF LNITS OF SERVICE-TIME PER CUSTOMER IS#»
#13+7# THE UPFER LIMIT 10 Twe NLMBER UF CUSTOMERS#s
## IN THE CSYSTEM [S#4+147)

END
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A.2 CHISQ.F4 — PREPROCESSING PROGRAM

"Cl, REAC IN ThE SAMPLE CF ARRIVALS PER UNIT TIME,
C2. SORY THE SAMPLE RBY NUMBER OF ARRIVALS.
C3. CHECK IF THE SAMPLE IS A POISSON FROCESS,

) DIMENSION Al1(101)PLC101)0IF(20)

Ce A1())=NUMBER COF CCCURANCES OF 1I-1 ARRIVALS PER UNIT TIME.
Ce N=TOTAL SAMPLE FCINTS.
kEAO(EO.lOU)h
SuM=0,
SUMZ2=0.
JMAX=0
SMALL=N,02%#N
. DO 900 1=1+101
S00 Al(ly=0r,
DO 1000 I=1sN
FEAD(20elC0) 1A
IF(IANF.R)YGC TQ 4000
Al(1)=A1(1)+1
GC TO 100¢
4000 COMTINUE
DO £000 uU=1s100C
IF(1IA,GT.J)GC TC 2000
Al(u+l)=Aa)(Uu+1)+1
SUM=SUM+]A
SUMz=SUMZ+ TARTA
CIF (U GTaUvAX) UMAXS
GO TC 160N
S000 CONTINUGF
1000  CONTLINUF
FMEAN=SUM/M
VAR=SUMA /N =FNMELN#FME AN
KATI0=VAF/FMEAN
TYPE 3 «FMEANsVARGRATIC .
CIF(RATTIO. TeloHoOreHATIO, fT.l.Z)GO T0 9996
Ce VERIFY IF THF SAMPLE 1S FOISS
- JMIN=])
FACI=1,
EXPA=SEXP (~FMEAN)
FMEENI=),
P1(1)=FXPA#N
€100 CONTINUF
DO 000 T=UMINeuMax
FACT=FACT%®]
FMERANTI=FMEANI#FNMEAN
P=EXPARFMFANI/ZFAC]H
€000 Pl(I+1)=kah
IF(PLIUMAYX) JLE SMALLICGU TG €206
CJIMINEUMAX 4]
JMAX=UMAX+ ]
GO TU RYUG
200 CONTINUE
NGF=umBX
PIL=P) (})
AlL=AL1(])

39



€323
€300
€460

€500

5594
GGGk

€010

L0000
100
300
400
450
%00
€00
700

Fluski{JMex)

Albz=al (JNax)

OO €30l I=Feulian

IF(FLlLeRE.SMALLYEGC TO #2110
FlL=FIL++1 (1)

ali_=all+£1 (1)

IL=1

LCF=0GF =)

CONTYIRLF

IF (LR GE JuMALL)GL TU &320
Flh=PlhepR ] (UNMLX=T)

AlFzAa}HeA] (Ut AX=1)

IThzyMax=]

LOF =COF =1

JF(FPIL eGE JSMELL sbinbiaF iretaf (SMALL)IGG [0 2400
CUNTINULE

CUNT INUF

DOF=DGF =1

IL1=1L+]

IFl=1lh=1 i
CRIZ=(ALL=-PlL)s#sg/s L+ (AlF=-FlFR)#22/F )P
L0 6900 JT=1L1eT+] ,
CrIe=CrRIc+ (ALY =1 (L) )REZF1(])

COINT INIFR

TYRE 4CGQertilzB0F

GG TOQ Q9662

[YFE 70Q

CONT INUE

TYre 4&0 .

DC 5000 J=]leuinXxali

NC RO1CU J=1s1lt

1IP(U)I=(T=1)+u=])

TYPE 500 (TP (U)ed=1sl()

TYRPE N0 (RPY(IRP(UI+]1)eu=1010)

TYPE 600« (ALCIFR(UY+L) ed=10)i0)

FCRM™AT (TS

FORMAT (/e VX a2FNMEANSVAROV/M = 2433F10.3)
FORMAT (/o1 Xe#CHT =CaUCF = 292F1044)
FORMAT(//e)Xe23S ARVLS/EXPTIr FREG/CHSVE FREQ TARLE VZe/)
FCRMAT (/o1 Xeld(12Xals))
FORMAT(1Xa10(1X9F,41))
FORMAT(//7«)1Xe2THE SAMFLE CoN NCT RE POTSSON $32)
END
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A.3 KOLMOG.F4 POSTPROCESSING PROGRAM

19
C THIS PROGEAM WAS LEVELOPED EY L1 SHIN YUAN. TRANQPORIAIION
C " SYSTEMS CFNTERe RLTs CAMBFILGEs MASS.s MAY 1976,
Cl. TEIS FFCGRAM COMPAKES THE nieSERVED wAIVTING TIME DISTRIBUTION
Ccl. WITH THE PHELEING MODEL GEMERATED WAITING TIME CISTRIBUTION USING
Cl. KOLMOGCROFF - TEST.
CIMENSTOMN OBEFRG(cUC) «GFRG (200)
RO 1G00 Y=1le200C
GRFRGIT)=D,.

CFRO( =1,
1000 CONT TNUF
4900 FURMAT (F5.y)
Ce  INFUTS FROM GLELEING MCDEL @
TYPE #GNO
€600 FORMAT (/91 X9sNUMBEER GF CLASSES KY GUEUEING MOUEL = %4/44X)

ACCEFT 41004MNQ
WREITE (1144100000
TYFE +~lgr
13 KiIY) FORMAT(/7e)Xo2TYrE IN THEH ONE AT A TIME WITKF «1e AS THE 15T2e/)
ACCrET 420G o (GFRL {1 e I=1wnG)
WHITE (1) ea2l0) (OFRGIE) o l=] s NG)

4¢lu FOURMAT(F7.5)

4100 FORMAT(T3)

4200 FORMAT (FT7.0)

Ce FACTOR=GUFUFING UNTFE TIvE/ZOB<ERVEC UNIT TIME,
TYFE farng

€400 FORMAT (/41X e#FACTCR = %9 /04X)

ACCERT 4nCUsFACTLP
WRITE(1140CO)FACTON
FACTUR=1,/FACTICK

Co INPUTS FROM QESFRVED CATA

J=1
SFREG=0
© TYRE 630D '
€300 FORMAT (/91X e2TYEF IN QRS VALLE ¢ FREQ 1| PAIR AT A TIME #+/+4X)
2000 " CCNTINUF

ACCERT 4220 9CrRSVeFhEC
WhlTE(1244ZZ0)CRSVeFREG
420 FORMAT(PFS.0)
IF(CRSV L Te=0.01)0RFRUIJI=SFREC
IF (O8SV.LTe=06.01)GC 10 2110
TOBRSV=0RCVHFACTOR+],.5%
IF(10FSV.GT+u)CO TC 2100
SFREG=SFDEQ+FRED
GO TC 2000
elng CoF~Q (V) =SFREC
J=INHSY
SFREQ=SFREG+FREG
GO0 7O 2099
€110  CONTINUF .
. N=SFREND
SFREuW=1+./SFREQ
CO 2200 T=1sICESY
OBFRUIT)=0RFRO (1) *SFREQ
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200 = CONTINUF '
Ce GET MAX ABS DEVIATE FOK TEST ] -
DMAX=0. :
0O 2300 1=2+I0ESV : )
IF (OBFRQ(I)2LE.0.,000001)Gn TO 2300
TF(QFRA(T) sLEL0.000001)QFRG(I) =1,
DEV=ABS(CBFRG (1) =0FRG(T))
IF(DEV.GT.OMAX)DMAX=CEY
2300 CONTINUF
FN=N
SARTN=SQRT(FN)
TYPE S000+NesSQRTNsDMAX
S000 . FORMAT (/91 X9 ZNeSOKTINsDMAY = 29laeFl0,.54F9.5)
. TYPE 5100
€100 FORMAT (/41 Xe#0BRSERVEL ¢ 2)
TYFE S2004+ (CBFRG(I)sI=1y10E5V)
5200  FORMAT(S5F9y&,,)
TYPE 5300
€300 FORMAT (/41X o2COVMPLTED ¢ 2)
IF(I108SV,.GT.AQING=I0FSYV
TYPE 5200+ {GFRG(L)el=1sNC)H
ENG

230 Copies
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